Monostability and Bistability of Probabilistic Boolean Networks

被引:0
作者
Li, Ruirui [1 ]
Chen, Hongwei [2 ]
Shen, Bo [2 ]
机构
[1] Donghua Univ, Coll Sci, Shanghai, Peoples R China
[2] Donghua Univ, Coll Informat Sci & Technol, Shanghai, Peoples R China
来源
2020 CHINESE AUTOMATION CONGRESS (CAC 2020) | 2020年
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
monostability; bistability; probabilistic Boolean networks; stabilization; probabilistic Boolean control networks; STATE-FEEDBACK STABILIZATION; CONTROLLABILITY; SYNCHRONIZATION; OBSERVABILITY; STABILITY;
D O I
10.1109/CAC51589.2020.9327387
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the monostability and bistability problem of probabilistic Boolean networks (PBNs). First, the concepts of the cycle and fixed point for the PBNs are put forward. Second, the definitions of (strictly) monostability and (strictly) bistability are introduced for the PBNs. Subsequently, a sufficient and necessary condition is derived for the monostability and bistability of the PBNs. In the light of the obtained sufficient and necessary condition, we consider the state feedback stabilization problem of probabilistic Boolean control networks (PBCNs). Specifically, we propose a method to determine whether the PBCN is (strictly) monostable or (strictly) bistable. Moreover, the state feedback controller has been designed for the state feedback stabilization of PBCNs. Finally, two examples, including the apoptosis network model, are given to illustrate the effectiveness of the obtained theoretical results.
引用
收藏
页码:5901 / 5906
页数:6
相关论文
共 24 条
[1]   State Estimation for Stochastic Time-Varying Boolean Networks [J].
Chen, Hongwei ;
Wang, Zidong ;
Liang, Jinling ;
Li, Maozhen .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (12) :5480-5487
[2]   Synchronization for the Realization-Dependent Probabilistic Boolean Networks [J].
Chen, Hongwei ;
Liang, Jinling ;
Lu, Jianquan ;
Qiu, Jianlong .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (04) :819-831
[3]   Monostability and Bistability of Boolean Networks Using Semitensor Products [J].
Chen, Shuqi ;
Wu, Yuhu ;
Macauley, Matthew ;
Sun, Xi-Ming .
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2019, 6 (04) :1379-1390
[4]   Controllability and observability of Boolean control networks [J].
Cheng, Daizhan ;
Qi, Hongsheng .
AUTOMATICA, 2009, 45 (07) :1659-1667
[5]  
Cheng DH, 2011, COMMUN CONTROL ENG, P1, DOI 10.1007/978-0-85729-097-7
[6]   Stability Analysis of Boolean Networks With Stochastic Function Perturbations [J].
Ding, Xueying ;
Li, Haitao ;
Li, Xiaodong ;
Sun, Weiwei .
IEEE ACCESS, 2019, 7 :1323-1329
[7]   Stabilization of probabilistic Boolean networks via pinning control strategy [J].
Huang, Chi ;
Lu, Jianquan ;
Ho, Daniel W. C. ;
Zhai, Guisheng ;
Cao, Jinde .
INFORMATION SCIENCES, 2020, 510 :205-217
[8]  
Kauffman S. A., 1993, The Origins of Order
[9]   METABOLIC STABILITY AND EPIGENESIS IN RANDOMLY CONSTRUCTED GENETIC NETS [J].
KAUFFMAN, SA .
JOURNAL OF THEORETICAL BIOLOGY, 1969, 22 (03) :437-&
[10]   An integer programming approach to optimal control problems in context-sensitive probabilistic Boolean networks [J].
Kobayashi, Koichi ;
Hiraishi, Kunihiko .
AUTOMATICA, 2011, 47 (06) :1260-1264