Flexible Piezoelectric MoS2/P(VDF-TrFE) Nanocomposite Film for Vibration Energy Harvesting

被引:9
作者
Arunguvai, J. [1 ]
Lakshmi, P. [1 ]
机构
[1] Anna Univ, Coll Engn Guindy, Dept Elect & Elect Engn, Chennai, Tamil Nadu, India
关键词
MoS2; P(VDF-TrFE); piezoelectric energy harvester; nanocomposite; freestanding thin film; AC output voltage; MOS2;
D O I
10.1007/s11664-021-09204-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Molybdenum disulfide (MoS2) material is mainly used in various electronic applications and in the solar energy harvesting process. In this work, MoS2 nanoparticles are used for piezoelectric vibration energy harvesting applications. MoS2 nanoparticles are synthesized by a hydrothermal process. The synthesized nano-MoS2 is inserted into polyvinylidene fluoride-trifluoroethylene P(VDF-TrFE) to form the MoS2/P(VDF-TrFE) nanocomposite. Through the presence of nano-MoS2 particles in the polymer chain and elemental molecular binding energy, phase transformation is confirmed by scanning electron microscopy (SEM) with energy dispersive spectrometer (EDS), x-ray photoelectron spectroscopy (XPS) and Fourier transform-infrared spectroscopy (FTIR), respectively. MoS2 nanoparticles in a polymer composite enhance the dielectric behaviour three times higher than that of the pure P(VDF-TrFE) as measured by an impedance analyzer. The four types of energy harvesting devices are fabricated based on the substrate effect like P(VDF-TrFE) without substrate, P(VDF-TrFE) with PET substrate, MoS2/P(VDF-TrFE) without substrate and MoS2/P(VDF-TrFE) with PET substrate and this devices natural resonance frequency, output voltage performance are analyzed by using LDV and shaker. MoS2/P(VDFTrFE) with PET substrate piezoelectric cantilever harvests more AC output voltage 2.96 V in the size of 1 cm * 0.5 cm length and width, respectively.
引用
收藏
页码:6870 / 6880
页数:11
相关论文
共 36 条
[1]   Flexible piezoelectric nano-composite films for kinetic energy harvesting from textiles [J].
Almusallam, Ahmed ;
Luo, Zhenhua ;
Komolafe, Abiodun ;
Yang, Kai ;
Robinson, Andrew ;
Torah, Russel ;
Beeby, Steve .
NANO ENERGY, 2017, 33 :146-156
[2]   Flexible nano-vibration energy harvester using three-phase polymer composites [J].
Arunguvai, J. ;
Lakshmi, P. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (11) :8283-8290
[3]  
Baur C, 2014, ACS SYM SER, V1161, P1
[4]  
Chaoxing Wu., 2017, ACS NANO, V11, P8, DOI [10.1021/acsnano.7b03657, DOI 10.1021/ACSNANO.7B03657]
[5]  
Dimple NJ., 2017, J PHYS CHEM C, V121, P17, DOI [10.1021/acs.jpcc.7b01970, DOI 10.1021/ACS.JPCC.7B01970]
[6]   Wafer-Scale Synthesized MoS2/Porous Silicon Nanostructures for Efficient and Selective Ethanol Sensing at Room Temperature [J].
Dwivedi, Priyanka ;
Das, Samaresh ;
Dhanekar, Saakshi .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (24) :21017-21024
[7]  
Eruturk A., 2011, PIEZO ELECT ENERGY H
[8]   Highly Sensitive Impact Sensor Based on PVDF-TrFE/Nano-ZnO Composite Thin Film [J].
Han, Jing ;
Li, Dong ;
Zhao, Chunmao ;
Wang, Xiaoyan ;
Li, Jie ;
Wu, Xinzhe .
SENSORS, 2019, 19 (04)
[9]   Point-Defect-Passivated MoS2 Nanosheet-Based High Performance Piezoelectric Nanogenerator [J].
Han, Sang A. ;
Kim, Tae-Ho ;
Kim, Sung Kyun ;
Lee, Kang Hyuck ;
Park, Hye-Jeong ;
Lee, Ju-Hyuck ;
Kim, Sang-Woo .
ADVANCED MATERIALS, 2018, 30 (21)
[10]  
Harrison J. S., 2001, NASA/CR-2001-211422