Convolution Equation: Solution and Probabilistic Representation

被引:3
作者
Da Silva, Jose L. [1 ]
Erraoui, Mohamed [2 ]
Ouerdiane, Habib [3 ]
机构
[1] Univ Madeira, Math & Engn Dept, P-9000390 Funchal, Madeira, Portugal
[2] Univ Cadi Ayyad, Dept Math, Marrakech 2390, BP, Morocco
[3] Univ Tunis El Manar, Dept Math, Tunis 1060, Tunisia
来源
QUANTUM PROBABILITY AND INFINITE DIMENSIONAL ANALYSIS | 2010年 / 25卷
关键词
Generalized functions; convolution; adjoint operator; Cauchy problem; stochastic integrals in Hilbert space; OPERATORS;
D O I
10.1142/9789814295437_0016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a Cauchy problem associated to Delta(K)*, the adjoint of Delta K which is related to the Gross Laplacian for certain choice of the operator K. We show that the solution is a well defined generalized function in an appropriate space. Finally, using infinite dimensional stochastic calculus we give a probabilistic representation of the solution in terms of K-Wiener process W.
引用
收藏
页码:230 / +
页数:4
相关论文
共 50 条
  • [41] Global solution for a generalized Boussinesq equation
    Wang, Shubin
    Xue, Hongxia
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 204 (01) : 130 - 136
  • [42] Asymptotics of Solution to the Nonstationary Schrodinger Equation
    Omuraliev, Asan
    Kyzy, Peil Esengul
    FILOMAT, 2019, 33 (05) : 1361 - 1368
  • [43] Numerical solution of the Painlev, V equation
    Abramov, A. A.
    Yukhno, L. F.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (01) : 44 - 56
  • [44] CANONICAL HAMILTONIAN REPRESENTATION OF THE KRICHEVER-NOVIKOV EQUATION
    MOKHOV, OI
    MATHEMATICAL NOTES, 1991, 50 (3-4) : 939 - 945
  • [45] A NOTE ON THE CONVERGENCE OF THE SOLUTION OF THE NOVIKOV EQUATION
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (06): : 2865 - 2899
  • [46] ON THE CONTINUATION OF THE SOLUTION OF A QUATERNIONIC DIRAC EQUATION
    Sattorov, E. N.
    Ermamatova, F. E.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : C189 - C196
  • [47] Numerical solution of the Painlev, VI equation
    Abramov, A. A.
    Yukhno, L. F.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (02) : 180 - 193
  • [48] Strong solution of the stochastic Burgers equation
    Catuogno, P.
    Olivera, C.
    APPLICABLE ANALYSIS, 2014, 93 (03) : 646 - 652
  • [49] Representation of solutions of the Burgers equation using functional integrals
    S. E. Matskevich
    Russian Journal of Mathematical Physics, 2009, 16 : 508 - 517
  • [50] Analytic solution of the multiloop Baxter equation
    Beccaria, M.
    Belitsky, A. V.
    Kotikov, A. V.
    Zieme, S.
    NUCLEAR PHYSICS B, 2010, 827 (03) : 565 - 606