Convolution Equation: Solution and Probabilistic Representation

被引:3
作者
Da Silva, Jose L. [1 ]
Erraoui, Mohamed [2 ]
Ouerdiane, Habib [3 ]
机构
[1] Univ Madeira, Math & Engn Dept, P-9000390 Funchal, Madeira, Portugal
[2] Univ Cadi Ayyad, Dept Math, Marrakech 2390, BP, Morocco
[3] Univ Tunis El Manar, Dept Math, Tunis 1060, Tunisia
来源
QUANTUM PROBABILITY AND INFINITE DIMENSIONAL ANALYSIS | 2010年 / 25卷
关键词
Generalized functions; convolution; adjoint operator; Cauchy problem; stochastic integrals in Hilbert space; OPERATORS;
D O I
10.1142/9789814295437_0016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a Cauchy problem associated to Delta(K)*, the adjoint of Delta K which is related to the Gross Laplacian for certain choice of the operator K. We show that the solution is a well defined generalized function in an appropriate space. Finally, using infinite dimensional stochastic calculus we give a probabilistic representation of the solution in terms of K-Wiener process W.
引用
收藏
页码:230 / +
页数:4
相关论文
共 50 条