Integral geometry and geometric inequalities in hyperbolic space

被引:21
作者
Gallego, E [1 ]
Solanes, G [1 ]
机构
[1] Dept Math, Edifici Cc, Bellaterra 08193, Spain
关键词
hyperbolic space; convex set; quermassintegrale; mean curvature integrals; volume;
D O I
10.1016/j.difgeo.2005.01.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using results from integral geometry, we find inequalities involving mean curvature integrals of convex hypersurfaces in hyperbolic space. Such inequalities generalize the Minkowski formulas for euclidean convex sets. © 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:315 / 325
页数:11
相关论文
共 11 条
[1]   Comparison theorems on convex hypersurfaces in Hadamard manifolds [J].
Borisenko, AA ;
Miquel, V .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2002, 21 (02) :191-202
[2]   Total curvatures of convex hypersurfaces in hyperbolic space [J].
Borisenko, AA ;
Miquel, V .
ILLINOIS JOURNAL OF MATHEMATICS, 1999, 43 (01) :61-78
[3]   Relation between area and volume for λ-convex sets in Hadamard manifolds [J].
Borisenko, AA ;
Gallego, E ;
Reventós, A .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2001, 14 (03) :267-280
[4]  
BORISENKO AA, 1997, MAT FIZ ANAL GEOM, V4, P278
[5]   Asymptotic behaviour of λ-convex sets in the hyperbolic plane [J].
Gallego, E ;
Reventós, A .
GEOMETRIAE DEDICATA, 1999, 76 (03) :275-289
[6]  
GALLEGO E, 1985, J DIFFER GEOM, V21, P63
[7]  
Santalo L. A., 1976, Integral geometry and geometric probability
[8]   AVERAGES FOR POLYGONS FORMED BY RANDOM LINES IN EUCLIDEAN AND HYPERBOLIC PLANES [J].
SANTALO, LA ;
YANEZ, I .
JOURNAL OF APPLIED PROBABILITY, 1972, 9 (01) :140-&
[9]  
SANTALO LA, 1980, PORT MATH, V39, P239
[10]  
Solanes G., 2003, THESIS U AUT BARCELO