Speed-up of SOLPS-ITER code for tokamak edge modeling

被引:27
作者
Kaveeva, E. [1 ]
Rozhansky, V. [1 ]
Senichenkov, I. [1 ]
Veselova, I. [1 ]
Voskoboynikov, S. [1 ]
Sytova, E. [1 ,2 ]
Bonnin, X. [2 ]
Coster, D. [3 ]
机构
[1] St Petersburg State Polytech Univ, Polytech Skaya 29, St Petersburg 195251, Russia
[2] ITER Org, Route Vinon Sur Verdon,CS 90 046, F-13067 St Paul Les Durance, France
[3] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany
基金
俄罗斯科学基金会;
关键词
SOLPS-ITER; tokamak edge modeling; modeling speed-up; ELECTRIC-FIELDS; PLASMA;
D O I
10.1088/1741-4326/aae162
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Account of drifts and currents dramatically decreases the accessible time step for the integration of time dependent equations of SOLPS-ITER code for edge modeling. Running the code with sophisticated EIRENE Monte-Carlo model for neutrals and large number of fluid equations for multiple ion species makes the computation time unacceptably long. In the paper the main mechanisms leading to the time step limitations caused by drifts are discussed. Several methods of the suppression of these mechanisms are suggested and the results of numerical scheme tests with the applied corrections are presented. Application of these schemes decreases the time of convergence to steady state solution by more than an order of magnitude.
引用
收藏
页数:15
相关论文
共 14 条
[1]   Presentation of the New SOLPS-ITER Code Package for Tokamak Plasma Edge Modelling [J].
Bonnin, Xavier ;
Dekeyser, Wouter ;
Pitts, Richard ;
Coster, David ;
Voskoboynikov, Serguey ;
Wiesen, Sven .
PLASMA AND FUSION RESEARCH, 2016, 11 :1-6
[2]  
Helander P., 2002, COLLISIONAL TRANSPOR
[3]   NEOCLASSICAL TRANSPORT OF IMPURITIES IN TOKAMAK PLASMAS [J].
HIRSHMAN, SP ;
SIGMAR, DJ .
NUCLEAR FUSION, 1981, 21 (09) :1079-1201
[4]   Finalizing the ITER divertor design: The key role of SOLPS modeling [J].
Kukushkin, A. S. ;
Pacher, H. D. ;
Kotov, V. ;
Pacher, G. W. ;
Reiter, D. .
FUSION ENGINEERING AND DESIGN, 2011, 86 (12) :2865-2873
[5]   The high field side high density region in SOLPS-modeling of nitrogen-seeded H-modes in ASDEX Upgrade [J].
Reimold, F. ;
Wischmeier, M. ;
Potzel, S. ;
Guimarais, L. ;
Reiter, D. ;
Bernert, M. ;
Dunne, M. ;
Lunt, T. .
NUCLEAR MATERIALS AND ENERGY, 2017, 12 :193-199
[6]   A FULLY IMPLICIT, TIME-DEPENDENT 2-D FLUID CODE FOR MODELING TOKAMAK EDGE PLASMAS [J].
ROGNLIEN, TD ;
MILOVICH, JL ;
RENSINK, ME ;
PORTER, GD .
JOURNAL OF NUCLEAR MATERIALS, 1992, 196 :347-351
[7]   Modeling of ITER Edge Plasma in the Presence of Resonant Magnetic Perturbations [J].
Rozhansky, V. ;
Kaveeva, E. ;
Veselova, I. ;
Voskoboynikov, S. ;
Coster, D. .
CONTRIBUTIONS TO PLASMA PHYSICS, 2016, 56 (6-8) :587-591
[8]   Radial electric field in the biasing experiments and effective conductivity in a tokamak [J].
Rozhansky, V ;
Kaveeva, E ;
Voskoboynikov, S ;
Coster, D ;
Bonnin, X ;
Schneider, R .
PHYSICS OF PLASMAS, 2002, 9 (08) :3385-3394
[9]   Modelling of electric fields in tokamak edge plasma and L-H transition [J].
Rozhansky, V ;
Kaveeva, E ;
Voskoboynikov, S ;
Coster, D ;
Bonnin, X ;
Schneider, R .
NUCLEAR FUSION, 2002, 42 (09) :1110-1115
[10]   New B2SOLPS5.2 transport code for H-mode regimes in tokamaks [J].
Rozhansky, V. ;
Kaveeva, E. ;
Molchanov, P. ;
Veselova, I. ;
Voskoboynikov, S. ;
Coster, D. ;
Counsell, G. ;
Kirk, A. ;
Lisgo, S. .
NUCLEAR FUSION, 2009, 49 (02)