Machine learning aided classification of tremor in multiple sclerosis

被引:8
作者
Hossen, Abdulnasir [1 ]
Anwar, Abdul Rauf [2 ]
Koirala, Nabin [3 ]
Ding, Hao [4 ]
Budker, Dmitry [5 ]
Wickenbrock, Arne [5 ]
Heute, Ulrich [6 ]
Groppa, Sergiu [4 ]
Muthuraman, Muthuraman [4 ,8 ]
Deuschl, Gunther [7 ]
机构
[1] Sultan Qaboos Univ, Dept Elect & Comp Engn, Muscat 123, Oman
[2] Univ Engn & Technol, Dept Biomed Engn, Lahore 54890, Pakistan
[3] Yale Univ, Haskins Labs, New Haven, CT 06511 USA
[4] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Dept Neurol, Movement Disorders & Neurostimulat,Biomed Stat & M, D-55131 Mainz, Germany
[5] Johannes Gutenberg Univ Mainz, Helmholtz Inst Mainz, GSI Helmholtz Zent Schwerionenforschung, D-55128 Mainz, Germany
[6] Univ Kiel, Inst Digital Signal Proc & Syst Theory, Fac Engn, D-24143 Kiel, Germany
[7] Univ Kiel, Dept Neurol, D-24105 Kiel, Germany
[8] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Movement Disorders & Neurostimulat, Biomed Stat & Multimodal Signal Proc,Dept Neurol, Langenbeckstr 1, D-55131 Mainz, Germany
来源
EBIOMEDICINE | 2022年 / 82卷
关键词
Multiple sclerosis tremor; Essential tremor; Parkinson's disease tremor; Electromyogram; Accelerometer; PARKINSONS-DISEASE; CONSENSUS STATEMENT; RATING-SCALE; ACCELEROMETER; DISCRIMINATION; DIAGNOSIS; SIGNAL; TOOL;
D O I
10.1016/j.ebiom.2022.104152
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Tremors are frequent and disabling in people with multiple sclerosis (MS). Characteristic tremor frequencies in MS have a broad distribution range (1-10 Hz), which confounds the diagnostic from other forms of tremors. In this study, we propose a classification method for distinguishing MS tremors from other forms of cerebellar tremors. Methods Electromyogram (EMG), accelerometer and clinical data were obtained from a total of 120 [40 MS, 41 essential tremor (ET) and 39 Parkinson's disease (PD)] subjects. The proposed method - Soft Decision Wavelet Decomposition (SDWD) - was used to compute power spectral densities and receiver operating characteristic (ROC) analysis was performed for the automatic classification of the tremors. Association between the spectral features and clinical features (FTM - Fahn-Tolosa-Marin scale, UPDRS - Unified Parkinson's Disease Rating Scale), was assessed using a support vector regression (SVR) model. Findings Our developed analytical framework achieved an accuracy of up to 91.67% using accelerometer data and up to 91.60% using EMG signals for the differentiation of MS tremors and the tremors from ET and PD. In addition, SVR further revealed strong significant correlations between the selected discriminators and the clinical scores. Interpretation The proposed method, with high classification accuracy and strong correlations of these features to clinical outcomes, has clearly demonstrated the potential to complement the existing tremor-diagnostic approach in MS patients. Copyright (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Incorporating machine learning approaches to assess putative environmental risk factors for multiple sclerosis
    Mowry, Ellen M.
    Hedstrom, Anna K.
    Gianfrancesco, Milena A.
    Shao, Xiaorong
    Schaefer, Catherine A.
    Shen, Ling
    Bellesis, Kalliope H.
    Briggs, Farren B. S.
    Olsson, Tomas
    Alfredsson, Lars
    Barcellos, Lisa F.
    MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2018, 24 : 135 - 141
  • [42] Telemonitoring Parkinson’s disease using machine learning by combining tremor and voice analysis
    Sajal M.S.R.
    Ehsan M.T.
    Vaidyanathan R.
    Wang S.
    Aziz T.
    Mamun K.A.A.
    Sajal, Md. Sakibur Rahman (sakibur@cse.uiu.ac.bd), 1600, Springer Science and Business Media Deutschland GmbH (07):
  • [43] Chemiresistive Sensor Array and Machine Learning Classification of Food
    Schroeder, Vera
    Evans, Ethan D.
    Wu, You-Chi Mason
    Voll, Constantin-Christian A.
    McDonald, Benjamin R.
    Savagatrup, Suchol
    Swager, Timothy M.
    ACS SENSORS, 2019, 4 (08): : 2101 - 2108
  • [44] CVSnet: A machine learning approach for automated central vein sign assessment in multiple sclerosis
    Maggi, Pietro
    Fartaria, Mario Joao
    Jorge, Joao
    La Rosa, Francesco
    Absinta, Martina
    Sati, Pascal
    Meuli, Reto
    Du Pasquier, Renaud
    Reich, Daniel S.
    Cuadra, Meritxell Bach
    Granziera, Cristina
    Richiardi, Jonas
    Kober, Tobias
    NMR IN BIOMEDICINE, 2020, 33 (05)
  • [45] Intraoperative smile in a multiple sclerosis patient with medication-refractory tremor
    Thompson, Amanda J.
    Peng-Chen, Zhongxing
    Pastrana, Marlon
    Foote, Kelly D.
    Haq, Ihtsham
    Okun, Michael S.
    NEUROCASE, 2014, 20 (06) : 698 - 703
  • [46] Deep Brain Stimulation for Multiple Sclerosis Tremor: A Meta-Analysis
    Brandmeir, Nicholas J.
    Murray, Ann
    Cheyuo, Cletus
    Ferari, Christopher
    Rezai, Ali R.
    NEUROMODULATION, 2020, 23 (04): : 463 - 468
  • [47] Parkinson's disease and essential tremor classification on mobile device
    Woods, Alan Michael
    Nowostawski, Mariusz
    Franz, Elizabeth A.
    Purvis, Martin
    PERVASIVE AND MOBILE COMPUTING, 2014, 13 : 1 - 12
  • [48] Machine learning aided jump height estimate democratization through smartphone measures
    Mascia, Guido
    De Lazzari, Beatrice
    Camomilla, Valentina
    FRONTIERS IN SPORTS AND ACTIVE LIVING, 2023, 5
  • [49] A comprehensive FTIR micro-spectroscopic analysis and classification of precancerous human oral tissue aided by machine learning
    Talukdar, Pranab Jyoti
    Bharti, Kartikeya
    Banerjee, Sumita
    Basu, Sautami
    Das, Sanjeet Kumar
    Paul, Ranjan Rashmi
    Pal, Mousumi
    Mishra, Mahendra Prasad
    Mukherjee, Saikat
    Lahiri, Pooja
    Lahiri, Basudev
    SENSORS & DIAGNOSTICS, 2024, 3 (11): : 1854 - 1865
  • [50] Effect of Deep Brain Stimulation on Cerebellar Tremor Compared to Non-Cerebellar Tremor Using a Wearable Device in a Patient With Multiple Sclerosis: Case Report
    Xie, Tao
    Padmanaban, Mahesh
    Javed, Adil
    Satzer, David
    Towle, Theresa E.
    Warnke, Peter
    Towle, Vernon L.
    FRONTIERS IN HUMAN NEUROSCIENCE, 2022, 15