Machine learning aided classification of tremor in multiple sclerosis

被引:8
|
作者
Hossen, Abdulnasir [1 ]
Anwar, Abdul Rauf [2 ]
Koirala, Nabin [3 ]
Ding, Hao [4 ]
Budker, Dmitry [5 ]
Wickenbrock, Arne [5 ]
Heute, Ulrich [6 ]
Groppa, Sergiu [4 ]
Muthuraman, Muthuraman [4 ,8 ]
Deuschl, Gunther [7 ]
机构
[1] Sultan Qaboos Univ, Dept Elect & Comp Engn, Muscat 123, Oman
[2] Univ Engn & Technol, Dept Biomed Engn, Lahore 54890, Pakistan
[3] Yale Univ, Haskins Labs, New Haven, CT 06511 USA
[4] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Dept Neurol, Movement Disorders & Neurostimulat,Biomed Stat & M, D-55131 Mainz, Germany
[5] Johannes Gutenberg Univ Mainz, Helmholtz Inst Mainz, GSI Helmholtz Zent Schwerionenforschung, D-55128 Mainz, Germany
[6] Univ Kiel, Inst Digital Signal Proc & Syst Theory, Fac Engn, D-24143 Kiel, Germany
[7] Univ Kiel, Dept Neurol, D-24105 Kiel, Germany
[8] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Movement Disorders & Neurostimulat, Biomed Stat & Multimodal Signal Proc,Dept Neurol, Langenbeckstr 1, D-55131 Mainz, Germany
来源
EBIOMEDICINE | 2022年 / 82卷
关键词
Multiple sclerosis tremor; Essential tremor; Parkinson's disease tremor; Electromyogram; Accelerometer; PARKINSONS-DISEASE; CONSENSUS STATEMENT; RATING-SCALE; ACCELEROMETER; DISCRIMINATION; DIAGNOSIS; SIGNAL; TOOL;
D O I
10.1016/j.ebiom.2022.104152
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Tremors are frequent and disabling in people with multiple sclerosis (MS). Characteristic tremor frequencies in MS have a broad distribution range (1-10 Hz), which confounds the diagnostic from other forms of tremors. In this study, we propose a classification method for distinguishing MS tremors from other forms of cerebellar tremors. Methods Electromyogram (EMG), accelerometer and clinical data were obtained from a total of 120 [40 MS, 41 essential tremor (ET) and 39 Parkinson's disease (PD)] subjects. The proposed method - Soft Decision Wavelet Decomposition (SDWD) - was used to compute power spectral densities and receiver operating characteristic (ROC) analysis was performed for the automatic classification of the tremors. Association between the spectral features and clinical features (FTM - Fahn-Tolosa-Marin scale, UPDRS - Unified Parkinson's Disease Rating Scale), was assessed using a support vector regression (SVR) model. Findings Our developed analytical framework achieved an accuracy of up to 91.67% using accelerometer data and up to 91.60% using EMG signals for the differentiation of MS tremors and the tremors from ET and PD. In addition, SVR further revealed strong significant correlations between the selected discriminators and the clinical scores. Interpretation The proposed method, with high classification accuracy and strong correlations of these features to clinical outcomes, has clearly demonstrated the potential to complement the existing tremor-diagnostic approach in MS patients. Copyright (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A machine learning approach for multiple sclerosis diagnosis through Detecron Architecture
    Chaima Dachraoui
    Aymen Mouelhi
    Amine Mosbeh
    Wassim Sliti
    Cyrine Drissi
    Basel Solaiman
    Salam Labidi
    Multimedia Tools and Applications, 2024, 83 : 42837 - 42859
  • [22] A systematic review of the application of machine-learning algorithms in multiple sclerosis
    Vazquez-Marrufo, M.
    Sarrias-Arrabal, E.
    Garcia-Torres, M.
    Martin-Clemente, R.
    Izquierdo, G.
    NEUROLOGIA, 2023, 38 (08): : 577 - 590
  • [23] A machine learning approach for multiple sclerosis diagnosis through Detecron Architecture
    Dachraoui, Chaima
    Mouelhi, Aymen
    Mosbeh, Amine
    Sliti, Wassim
    Drissi, Cyrine
    Solaiman, Basel
    Labidi, Salam
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (14) : 42837 - 42859
  • [24] Validation of a precision tremor measurement system for multiple sclerosis
    Perera, Thushara
    Lee, Wee-Lih
    Yohanandan, Shivanthan A. C.
    Ai-Lan Nguyen
    Cruse, Belinda
    Boonstra, Frederique M. C.
    Noffs, Gustavo
    Vogel, Adam P.
    Kolbe, Scott C.
    Butzkueven, Helmut
    Evans, Andrew
    van der Walt, Anneke
    JOURNAL OF NEUROSCIENCE METHODS, 2019, 311 : 377 - 384
  • [25] Fluorescent Machine Learning Aided Classification of Pathogenic Bacteria Using the Excitation Emission Matrix
    Sundaramoorthy, Anandh
    Thoufeeq, Jamal Mohamed
    Ganesan, Bharanidharan
    Prakasarao, Aruna
    Ganesan, Singaravelu
    ANALYTICAL LETTERS, 2025, 58 (01) : 136 - 151
  • [26] MACHINE-LEARNING TECHNIQUES IN MULTIPLE SCLEROSIS PREDICTION USING EEG
    Soleimanidoust, Leila
    Rezai, Abdalhossein
    Barghamadi, Hamideh
    Ahanian, Iman
    BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2024,
  • [27] Accelerometric Classification of Resting and Postural Tremor Amplitude
    van der Linden, Christina
    Berger, Thea
    Brandt, Gregor A.
    Strelow, Joshua N.
    Jergas, Hannah
    Baldermann, Juan Carlos
    Visser-Vandewalle, Veerle
    Fink, Gereon R.
    Barbe, Michael T.
    Petry-Schmelzer, Jan Niklas
    Dembek, Till A.
    SENSORS, 2023, 23 (20)
  • [28] A Machine Learning Approach for Walking Classification in Elderly People with Gait Disorders
    Peimankar, Abdolrahman
    Winther, Trine Straarup
    Ebrahimi, Ali
    Wiil, Uffe Kock
    SENSORS, 2023, 23 (02)
  • [29] Inferring Multiple Sclerosis Stages from the Blood Transcriptome via Machine Learning
    Acquaviva, Massimo
    Menon, Ramesh
    Di Dario, Marco
    Dalla Costa, Gloria
    Romeo, Marzia
    Sangalli, Francesca
    Colombo, Bruno
    Moiola, Lucia
    Martinelli, Vittorio
    Comi, Giancarlo
    Farina, Cinthia
    CELL REPORTS MEDICINE, 2020, 1 (04)
  • [30] MEASURING INTENTION TREMOR IN MULTIPLE SCLEROSIS USING INERTIAL MEASUREMENT UNIT (IMU) DEVICES
    Ketteringham, Laurence P.
    Neild, Simon A.
    Hyde, Richard A.
    Jones, Rosemary J. S.
    Smith, Angela M. Davies
    BIODEVICES 2011, 2011, : 204 - +