Machine learning aided classification of tremor in multiple sclerosis

被引:8
|
作者
Hossen, Abdulnasir [1 ]
Anwar, Abdul Rauf [2 ]
Koirala, Nabin [3 ]
Ding, Hao [4 ]
Budker, Dmitry [5 ]
Wickenbrock, Arne [5 ]
Heute, Ulrich [6 ]
Groppa, Sergiu [4 ]
Muthuraman, Muthuraman [4 ,8 ]
Deuschl, Gunther [7 ]
机构
[1] Sultan Qaboos Univ, Dept Elect & Comp Engn, Muscat 123, Oman
[2] Univ Engn & Technol, Dept Biomed Engn, Lahore 54890, Pakistan
[3] Yale Univ, Haskins Labs, New Haven, CT 06511 USA
[4] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Dept Neurol, Movement Disorders & Neurostimulat,Biomed Stat & M, D-55131 Mainz, Germany
[5] Johannes Gutenberg Univ Mainz, Helmholtz Inst Mainz, GSI Helmholtz Zent Schwerionenforschung, D-55128 Mainz, Germany
[6] Univ Kiel, Inst Digital Signal Proc & Syst Theory, Fac Engn, D-24143 Kiel, Germany
[7] Univ Kiel, Dept Neurol, D-24105 Kiel, Germany
[8] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Movement Disorders & Neurostimulat, Biomed Stat & Multimodal Signal Proc,Dept Neurol, Langenbeckstr 1, D-55131 Mainz, Germany
来源
EBIOMEDICINE | 2022年 / 82卷
关键词
Multiple sclerosis tremor; Essential tremor; Parkinson's disease tremor; Electromyogram; Accelerometer; PARKINSONS-DISEASE; CONSENSUS STATEMENT; RATING-SCALE; ACCELEROMETER; DISCRIMINATION; DIAGNOSIS; SIGNAL; TOOL;
D O I
10.1016/j.ebiom.2022.104152
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Tremors are frequent and disabling in people with multiple sclerosis (MS). Characteristic tremor frequencies in MS have a broad distribution range (1-10 Hz), which confounds the diagnostic from other forms of tremors. In this study, we propose a classification method for distinguishing MS tremors from other forms of cerebellar tremors. Methods Electromyogram (EMG), accelerometer and clinical data were obtained from a total of 120 [40 MS, 41 essential tremor (ET) and 39 Parkinson's disease (PD)] subjects. The proposed method - Soft Decision Wavelet Decomposition (SDWD) - was used to compute power spectral densities and receiver operating characteristic (ROC) analysis was performed for the automatic classification of the tremors. Association between the spectral features and clinical features (FTM - Fahn-Tolosa-Marin scale, UPDRS - Unified Parkinson's Disease Rating Scale), was assessed using a support vector regression (SVR) model. Findings Our developed analytical framework achieved an accuracy of up to 91.67% using accelerometer data and up to 91.60% using EMG signals for the differentiation of MS tremors and the tremors from ET and PD. In addition, SVR further revealed strong significant correlations between the selected discriminators and the clinical scores. Interpretation The proposed method, with high classification accuracy and strong correlations of these features to clinical outcomes, has clearly demonstrated the potential to complement the existing tremor-diagnostic approach in MS patients. Copyright (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Machine Learning in Tremor Analysis: Critique and Directions
    De, Anwesan
    Bhatia, Kailash P.
    Volkmann, Jens
    Peach, Robert
    Schreglmann, Sebastian R.
    MOVEMENT DISORDERS, 2023, 38 (05) : 717 - 731
  • [2] On the classification of tremor signals into dyskinesia, Parkinsonian tremor, and Essential tremor by using machine learning techniques
    Ferreira, Gabriel A. S.
    Teixeira, Joao Lucas S.
    Rosso, Ana Lucia Z.
    De Sa, Antonio Mauricio F. L. Miranda
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 73
  • [3] A Machine Learning Approach for Classification of Tremor - A Neurological Movement Disorder
    Ranjan, Rajesh
    Palaniswami, Marimuthu
    Bhushan, Braj
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, 2020, 1038 : 1289 - 1307
  • [4] Analysis of tremor in multiple sclerosis using Hilbert-Huang Transform
    Ayache, S. -S.
    Al-ani, T.
    Farhat, W. -H.
    Zouari, H. -G.
    Creange, A.
    Lefaucheur, J. -P.
    NEUROPHYSIOLOGIE CLINIQUE-CLINICAL NEUROPHYSIOLOGY, 2015, 45 (06): : 475 - 484
  • [5] Machine learning classification of multiple sclerosis in children using optical coherence tomography
    Ciftci Kavaklioglu, Beyza
    Erdman, Lauren
    Goldenberg, Anna
    Kavaklioglu, Can
    Alexander, Cara
    Oppermann, Hannah M.
    Patel, Amish
    Hossain, Soaad
    Berenbaum, Tara
    Yau, Olivia
    Yea, Carmen
    Ly, Mina
    Costello, Fiona
    Mah, Jean K.
    Reginald, Arun
    Banwell, Brenda
    Longoni, Giulia
    Ann Yeh, E.
    MULTIPLE SCLEROSIS JOURNAL, 2022, 28 (14) : 2253 - 2262
  • [6] Supervised machine learning aided behavior classification in pigeons
    Wittek, Neslihan
    Wittek, Kevin
    Keibel, Christopher
    Gunturkun, Onur
    BEHAVIOR RESEARCH METHODS, 2023, 55 (04) : 1624 - 1640
  • [7] Internal tremor in Parkinson's disease, multiple sclerosis, and essential tremor
    Cochrane, Graham D.
    Rizvi, Syed
    Abrantes, Ana
    Crabtree, Brigid
    Cahill, Jonathan
    Friedman, Joseph H.
    PARKINSONISM & RELATED DISORDERS, 2015, 21 (10) : 1145 - 1147
  • [8] Parkinson's disease resting tremor severity classification using machine learning with resampling techniques
    Channa, Asma
    Cramariuc, Oana
    Memon, Madeha
    Popescu, Nirvana
    Mammone, Nadia
    Ruggeri, Giuseppe
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [9] Are smartphones and machine learning enough to diagnose tremor?
    Arjun Balachandar
    Musleh Algarni
    Lais Oliveira
    Luca Marsili
    Aristide Merola
    Andrea Sturchio
    Alberto J. Espay
    William D. Hutchison
    Aniruddh Balasubramaniam
    Frank Rudzicz
    Alfonso Fasano
    Journal of Neurology, 2022, 269 : 6104 - 6115
  • [10] Are smartphones and machine learning enough to diagnose tremor?
    Balachandar, Arjun
    Algarni, Musleh
    Oliveira, Lais
    Marsili, Luca
    Merola, Aristide
    Sturchio, Andrea
    Espay, Alberto J.
    Hutchison, William D.
    Balasubramaniam, Aniruddh
    Rudzicz, Frank
    Fasano, Alfonso
    JOURNAL OF NEUROLOGY, 2022, 269 (11) : 6104 - 6115