Synchronizing spatio-temporal chaos with imperfect models: A stochastic surface growth picture

被引:6
作者
Pazo, Diego [1 ]
Lopez, Juan M. [1 ]
Gallego, Rafael [2 ]
Rodriguez, Miguel A. [1 ]
机构
[1] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain
[2] Univ Oviedo, Dept Matemat, Gijon 33203, Spain
关键词
GENERALIZED SYNCHRONIZATION; CRITICAL-BEHAVIOR; DATA ASSIMILATION; SYSTEMS; EQUATION;
D O I
10.1063/1.4898385
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the synchronization of two spatially extended dynamical systems where the models have imperfections. We show that the synchronization error across space can be visualized as a rough surface governed by the Kardar-Parisi-Zhang equation with both upper and lower bounding walls corresponding to nonlinearities and model discrepancies, respectively. Two types of model imperfections are considered: parameter mismatch and unresolved fast scales, finding in both cases the same qualitative results. The consistency between different setups and systems indicates that the results are generic for a wide family of spatially extended systems. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 57 条
[41]   Dynamic localization of Lyapunov vectors in spacetime chaos [J].
Pikovsky, A ;
Politi, A .
NONLINEARITY, 1998, 11 (04) :1049-1062
[42]   ROUGHENING INTERFACES IN THE DYNAMICS OF PERTURBATIONS OF SPATIOTEMPORAL CHAOS [J].
PIKOVSKY, AS ;
KURTHS, J .
PHYSICAL REVIEW E, 1994, 49 (01) :898-901
[43]  
Press W. H., 1992, Numerical Recipes in FORTRAN 77: Volume 1, Volume 1 of Fortran Numerical Recipes: The Art of Scientific Computing, V1
[44]   Criteria for synchronization of coupled chaotic external-cavity semiconductor lasers [J].
Revuelta, J ;
Mirasso, CR ;
Colet, P ;
Pesquera, L .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2002, 14 (02) :140-142
[45]   Generalized synchronization of spatiotemporal chaos in a liquid crystal spatial light modulator [J].
Rogers, EA ;
Kalra, R ;
Schroll, RD ;
Uchida, A ;
Lathrop, DP ;
Roy, R .
PHYSICAL REVIEW LETTERS, 2004, 93 (08) :084101-1
[46]   GENERALIZED SYNCHRONIZATION OF CHAOS IN DIRECTIONALLY COUPLED CHAOTIC SYSTEMS [J].
RULKOV, NF ;
SUSHCHIK, MM ;
TSIMRING, LS ;
ABARBANEL, HDI .
PHYSICAL REVIEW E, 1995, 51 (02) :980-994
[47]   Intermittency transition to generalized synchronization in coupled time-delay systems [J].
Senthilkumar, D. V. ;
Lakshmanan, M. .
PHYSICAL REVIEW E, 2007, 76 (06)
[48]   Transition from phase to generalized synchronization in time-delay systems [J].
Senthilkumar, D. V. ;
Lakshmanan, M. ;
Kurths, J. .
CHAOS, 2008, 18 (02)
[49]   Spatial correlations of synchronization errors in extended chaotic systems [J].
Szendro, I. G. ;
Rodriguez, M. A. ;
Lopez, J. M. .
EPL, 2009, 86 (02)
[50]   Universal critical behavior of the synchronization transition in delayed chaotic systems -: art. no. 055203 [J].
Szendro, IG ;
López, JM .
PHYSICAL REVIEW E, 2005, 71 (05)