Synchronizing spatio-temporal chaos with imperfect models: A stochastic surface growth picture

被引:6
作者
Pazo, Diego [1 ]
Lopez, Juan M. [1 ]
Gallego, Rafael [2 ]
Rodriguez, Miguel A. [1 ]
机构
[1] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain
[2] Univ Oviedo, Dept Matemat, Gijon 33203, Spain
关键词
GENERALIZED SYNCHRONIZATION; CRITICAL-BEHAVIOR; DATA ASSIMILATION; SYSTEMS; EQUATION;
D O I
10.1063/1.4898385
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the synchronization of two spatially extended dynamical systems where the models have imperfections. We show that the synchronization error across space can be visualized as a rough surface governed by the Kardar-Parisi-Zhang equation with both upper and lower bounding walls corresponding to nonlinearities and model discrepancies, respectively. Two types of model imperfections are considered: parameter mismatch and unresolved fast scales, finding in both cases the same qualitative results. The consistency between different setups and systems indicates that the results are generic for a wide family of spatially extended systems. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 57 条
[1]   Generalized synchronization of chaos: The auxiliary system approach [J].
Abarbanel, HDI ;
Rulkov, NF ;
Sushchik, MM .
PHYSICAL REVIEW E, 1996, 53 (05) :4528-4535
[2]   Data assimilation with regularized nonlinear instabilities [J].
Abarbanel, Henry D. I. ;
Kostuk, Mark ;
Whartenby, William .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2010, 136 (648) :769-783
[3]  
Afraimovich V. S., 1986, Radiophysics and Quantum Electronics, V29, P795, DOI 10.1007/BF01034476
[4]   Critical properties of the synchronization transition in space-time chaos [J].
Ahlers, V ;
Pikovsky, A .
PHYSICAL REVIEW LETTERS, 2002, 88 (25) :4
[5]   A non-order parameter Langevin equation for a bounded Kardar-Parisi-Zhang universality class -: art. no. P10013 [J].
Al Hammal, O ;
de los Santos, F ;
Muñoz, MA .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, :229-237
[6]   2-DIMENSIONAL REPRESENTATION OF A DELAYED DYNAMIC SYSTEM [J].
ARECCHI, FT ;
GIACOMELLI, G ;
LAPUCCI, A ;
MEUCCI, R .
PHYSICAL REVIEW A, 1992, 45 (07) :R4225-R4228
[7]   Chaos-based communications at high bit rates using commercial fibre-optic links [J].
Argyris, A ;
Syvridis, D ;
Larger, L ;
Annovazzi-Lodi, V ;
Colet, P ;
Fischer, I ;
García-Ojalvo, J ;
Mirasso, CR ;
Pesquera, L ;
Shore, KA .
NATURE, 2005, 438 (7066) :343-346
[8]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[9]   Synchronization based system identification of an extended excitable system [J].
Berg, S. ;
Luther, S. ;
Parlitz, U. .
CHAOS, 2011, 21 (03)
[10]   Synchronization in nonidentical extended systems [J].
Boccaletti, S ;
Bragard, J ;
Arecchi, FT ;
Mancini, H .
PHYSICAL REVIEW LETTERS, 1999, 83 (03) :536-539