MAXIMUM BIPARTITE SUBGRAPHS IN H-FREE GRAPHS

被引:1
作者
Lin, Jing [1 ]
机构
[1] Fujian Univ Technol, Sch Comp Sci & Math, 3 Xueyuan Rd, Fuzhou 350118, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
bipartite subgraph; H-free; partition; CUTS;
D O I
10.21136/CMJ.2022.0302-20
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a graph G, let f(G) denote the maximum number of edges in a bipartite subgraph of G. Given a fixed graph H and a positive integer m, let f (m, H) denote the minimum possible cardinality of f (G), as G ranges over all graphs on m edges that contain no copy of H. In this paper we prove that f(m, theta(k,s)) >= 1/2m + Omega( m((2k+1)/(2k+2))) which extends the results of N. Alon, M. Krivelevich, B. Sudakov. Write K-k(') and K-t,s(') for the subdivisions of K-k and K-t,K-s. We show that f (m, K-k(')) >= 1/2m + Omega(m((5k-8)/(6k-10))) and f(m,K-t,s(')) >= 1/2m + Omega(m((5t-1)/(6t-2))) improving a result of Q. Zeng, J. Hou. We also give lower bounds on wheel-free graphs. All of these contribute to a conjecture of N. Alon, B. Bollobas, M. Krivelevich, B. Sudakov (2003).
引用
收藏
页码:621 / 635
页数:15
相关论文
共 22 条
[1]   MaxCut in H-free graphs [J].
Alon, N ;
Krivelevich, M ;
Sudakov, B .
COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (5-6) :629-647
[2]   Maximum cuts and judicious partitions in graphs without short cycles [J].
Alon, N ;
Bollobás, B ;
Krivelevich, M ;
Sudakov, B .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 88 (02) :329-346
[3]   Bipartite subgraphs of integer weighted graphs [J].
Alon, N ;
Halperin, E .
DISCRETE MATHEMATICS, 1998, 181 (1-3) :19-29
[4]   Bipartite subgraphs [J].
Alon, N .
COMBINATORICA, 1996, 16 (03) :301-311
[5]  
Bollobás B, 2002, BOLYAI MATH STUD, V10, P185
[6]   Problems and results on judicious partitions [J].
Bollobás, B ;
Scott, AD .
RANDOM STRUCTURES & ALGORITHMS, 2002, 21 (3-4) :414-430
[7]   MORE ON THE EXTREMAL NUMBER OF SUBDIVISIONS [J].
Conlon, David ;
Janzer, Oliver ;
Lee, Joonkyung .
COMBINATORICA, 2021, 41 (04) :465-494
[8]  
Edwards C., 1975, RECENT ADV GRAPH THE, P167
[9]  
EDWARDS CS, 1973, CAN J MATH, V25, P475, DOI 10.4153/CJM-1973-048-x
[10]   The size of the largest bipartite subgraphs [J].
Erdos, P ;
Gyarfas, A ;
Kohayakawa, Y .
DISCRETE MATHEMATICS, 1997, 177 (1-3) :267-271