A Visual Analytics Framework for Microblog Data Analysis at Multiple Scales of Aggregation

被引:16
|
作者
Zhang, Jiawei [1 ]
Ahlbrand, Benjamin [1 ]
Malik, Abish [1 ]
Chae, Junghoon [1 ]
Min, Zhiyu [2 ]
Ko, Sungahn [3 ]
Ebert, David S. [1 ]
机构
[1] Purdue Univ, W Lafayette, IN 47907 USA
[2] Univ Sci & Technol China, Hefei, Peoples R China
[3] Ulsan Natl Inst Sci & Technol, Ulsan, South Korea
关键词
ANIMATED TRANSITIONS; SOCIAL MEDIA; EXPLORATION; DESIGN;
D O I
10.1111/cgf.12920
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Real-time microblogs can be utilized to provide situational awareness during emergency and disaster events. However, the utilization of these datasets requires the decision makers to perform their exploration and analysis across a range of data scales from local to global, while maintaining a cohesive thematic context of the transition between the different granularity levels. The exploration of different information dimensions at the varied data and human scales remains to be a non-trivial task. To this end, we present a visual analytics situational awareness environment that supports the real-time exploration of microblog data across multiple scales of analysis. We classify microblogs based on a fine-grained, crisis-related categorization approach, and visualize the spatiotemporal evolution of multiple categories by coupling a spatial lens with a glyph-based visual design. We propose a transparency-based spatial context preserving technique that maintains a smooth transition between different spatial scales. To evaluate our system, we conduct user studies and provide domain expert feedback.
引用
收藏
页码:441 / 450
页数:10
相关论文
共 50 条
  • [31] Visual Analytics Methods for Categoric Spatio-Temporal Data
    von Landesberger, T.
    Bremm, Sebastian
    Andrienko, Natalia
    Andrienko, Gennady
    Tekusova, Maria
    2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2012, : 183 - 192
  • [32] VASEM: visual analytics system for electron microscopy data bank
    Liu, Jun
    Gao, Yang
    Shan, Guihua
    Chi, Xuebin
    JOURNAL OF VISUALIZATION, 2019, 22 (06) : 1145 - 1159
  • [33] Application of Mathematical Optimization in Data Visualization and Visual Analytics: A Survey
    Sun, Guodao
    Zhu, Zihao
    Zhang, Gefei
    Xu, Chaoqing
    Wang, Yunchao
    Zhu, Sujia
    Chang, Baofeng
    Liang, Ronghua
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (04) : 1018 - 1037
  • [34] SparseTrajAnalytics: an Interactive Visual Analytics System for Sparse Trajectory Data
    Ye, Xinyue
    Du, Jiaxin
    Gong, Xi
    Zhao, Ye
    AL-Dohuki, Shamal
    Kamw, Farah
    JOURNAL OF GEOVISUALIZATION AND SPATIAL ANALYSIS, 2021, 5 (01)
  • [35] Visual Analytics for Spatial Clusters of Air-Quality Data
    Zhou, Zhiguang
    Ye, Zhifei
    Liu, Yanan
    Liu, Fang
    Tao, Yubo
    Su, Weihua
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2017, 37 (05) : 98 - 105
  • [36] Visual Cascade Analytics of Large-Scale Spatiotemporal Data
    Deng, Zikun
    Weng, Di
    Liang, Yuxuan
    Bao, Jie
    Zheng, Yu
    Schreck, Tobias
    Xu, Mingliang
    Wu, Yingcai
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (06) : 2486 - 2499
  • [37] ANTENNA: Visual Analytics of Mobility Derived from Cellphone Data
    Silva, Pedro
    Macas, Catarina
    Correia, Joao
    Machado, Penousal
    Polisciuc, Evgheni
    COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VISIGRAPP 2022, 2023, 1815 : 135 - 160
  • [38] Visual Analytics of Multivariate Event Sequence Data in Racquet Sports
    Wu, Jiang
    Guo, Ziyang
    Wang, Zuobin
    Xu, Qingyang
    Wu, Yingcai
    2020 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST 2020), 2020, : 36 - 47
  • [39] (re)Considering Bertin in the age of big data and visual analytics
    MacEachren, Alan M.
    CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE, 2019, 46 (02) : 101 - 118
  • [40] A Framework for Identifying and Prioritizing Data Analytics Opportunities in Additive Manufacturing
    Park, Hyunseop
    Ko, Hyunwoong
    Lee, Yung-Tsun T.
    Cho, Hyunbo
    Witherell, Paul
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 3458 - 3467