Tracking Radionuclide Fractionation in the First Atomic Explosion Using Stable Elements

被引:11
作者
Bonamici, Chloe E. [1 ,3 ]
Hervig, Richard L. [2 ]
Kinman, William S. [1 ]
机构
[1] Los Alamos Natl Lab, Nucl & Radiochem Grp, Chem Div, POB 1663,MS J514, Los Alamos, NM 87545 USA
[2] Arizona State Univ, Sch Earth & Space Explorat, POB 871404, Tempe, AZ 85287 USA
[3] New Mexico Inst Min & Technol, Dept Earth & Environm Sci, 801 Leroy Pl, Socorro, NM 87801 USA
基金
美国能源部; 美国国家科学基金会;
关键词
NUCLEAR TEST; ISOTOPE COMPOSITION; BOMB DEBRIS; TRINITITE; FALLOUT; CONDENSATION; GLASS; CONSTRAINTS; ABUNDANCES; PARTICLES;
D O I
10.1021/acs.analchem.7b01965
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Compositional analysis of postdetonation fall-out is a tool for forensic identification of nuclear devices. However, the relationship between device composition and fallout composition is difficult to interpret because of the complex combination of physical mixing, nuclear reactions, and chemical fractionations that occur in the chaotic nuclear fireball. Using a combination of in situ microanalytical techniques (electron microprobe analysis, and secondary ion mass spectrometry), we show that some heavy stable elements (Rb, Sr, Zr, Ba, Cs, Ba, La, Ce, Nd, Sm, Dy, Lu, U, Th) in glassy fallout from the first nuclear test, Trinity, are reliable chemical proxies for radionuclides generated during the explosion. Stable-element proxies show that radionuclides from the Trinity device were chemically, but not isotopically, fractionated by condensation. Furthermore, stable-element proxies delineate chemical fractionation trends that can be used to connect present-day fallout composition to past fireball composition. Stable.,element proxies therefore offer a novel approach for elucidating the phenomenology of the nuclear fireball as it relates to the formation of debris and the fixation of device materials within debris.
引用
收藏
页码:9877 / 9883
页数:7
相关论文
共 38 条
[21]   High precision SIMS oxygen isotope analysis and the effect of sample topography [J].
Kita, Noriko T. ;
Ushikubo, Takayuki ;
Fu, Bin ;
Valley, John W. .
CHEMICAL GEOLOGY, 2009, 264 (1-4) :43-57
[22]   Oxygen Isotope Composition of Trinitite Postdetonation Materials [J].
Koeman, Elizabeth C. ;
Simonetti, Antonio ;
Chen, Wei ;
Burns, Peter C. .
ANALYTICAL CHEMISTRY, 2013, 85 (24) :11913-11919
[23]   HIGH-TEMPERATURE VAPORIZATION BEHAVIOR OF OXIDES .2. OXIDES OF BE, MG, CA, SR, BA, B, AL, GA, IN, TL, SI, GE, SN, PB, ZN, CD, AND HG [J].
LAMOREAUX, RH ;
HILDENBRAND, DL ;
BREWER, L .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1987, 16 (03) :419-443
[24]   Spatially-resolved analyses of aerodynamic fallout from a uranium-fueled nuclear test [J].
Lewis, L. A. ;
Knight, K. B. ;
Matzel, J. E. ;
Prussin, S. G. ;
Zimmer, M. M. ;
Kinman, W. S. ;
Ryerson, F. J. ;
Hutcheon, I. D. .
JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2015, 148 :183-195
[25]  
Lide D.R., 2004, CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, V85th, P1
[26]   Solar system abundances and condensation temperatures of the elements [J].
Lodders, K .
ASTROPHYSICAL JOURNAL, 2003, 591 (02) :1220-1247
[27]   Nuclear Forensic Science: Correlating Measurable Material Parameters to the History of Nuclear Material [J].
Mayer, Klaus ;
Wallenius, Maria ;
Varga, Zsolt .
CHEMICAL REVIEWS, 2013, 113 (02) :884-900
[28]   THE COMPOSITION OF THE EARTH [J].
MCDONOUGH, WF ;
SUN, SS .
CHEMICAL GEOLOGY, 1995, 120 (3-4) :223-253
[29]  
Miller C. F., 1960, USNRDLTR425, P1
[30]   A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials [J].
Pearce, NJG ;
Perkins, WT ;
Westgate, JA ;
Gorton, MP ;
Jackson, SE ;
Neal, CR ;
Chenery, SP .
GEOSTANDARDS NEWSLETTER-THE JOURNAL OF GEOSTANDARDS AND GEOANALYSIS, 1997, 21 (01) :115-144