CRITICAL PERIODS OF THIRD-ORDER PLANAR HAMILTONIAN SYSTEMS

被引:15
|
作者
Yu, Pei [1 ,2 ]
Han, Maoan [1 ]
Zhang, Jizhou [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, Canada
来源
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Critical periods; Hamiltonian system; center; normal form; HILBERTS 16TH PROBLEM; 12; LIMIT-CYCLES; VECTOR-FIELDS; CUBIC SYSTEMS; BIFURCATION; COMPUTATION;
D O I
10.1142/S0218127410027040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers the critical periods of third-order planar Hamiltonian systems. It is assumed that the origin of the system is a center. With the aid of symbolic and numerical computations, we show the existence of seven local critical periods. This is the maximal number of local critical periods that a cubic Hamiltonian system can have.
引用
收藏
页码:2213 / 2224
页数:12
相关论文
共 50 条