CRITICAL PERIODS OF THIRD-ORDER PLANAR HAMILTONIAN SYSTEMS
被引:15
|
作者:
Yu, Pei
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, CanadaShanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
Yu, Pei
[1
,2
]
Han, Maoan
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R ChinaShanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
Han, Maoan
[1
]
Zhang, Jizhou
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R ChinaShanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
Zhang, Jizhou
[1
]
机构:
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, Canada
This paper considers the critical periods of third-order planar Hamiltonian systems. It is assumed that the origin of the system is a center. With the aid of symbolic and numerical computations, we show the existence of seven local critical periods. This is the maximal number of local critical periods that a cubic Hamiltonian system can have.