CRITICAL PERIODS OF THIRD-ORDER PLANAR HAMILTONIAN SYSTEMS

被引:15
|
作者
Yu, Pei [1 ,2 ]
Han, Maoan [1 ]
Zhang, Jizhou [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, Canada
来源
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Critical periods; Hamiltonian system; center; normal form; HILBERTS 16TH PROBLEM; 12; LIMIT-CYCLES; VECTOR-FIELDS; CUBIC SYSTEMS; BIFURCATION; COMPUTATION;
D O I
10.1142/S0218127410027040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers the critical periods of third-order planar Hamiltonian systems. It is assumed that the origin of the system is a center. With the aid of symbolic and numerical computations, we show the existence of seven local critical periods. This is the maximal number of local critical periods that a cubic Hamiltonian system can have.
引用
收藏
页码:2213 / 2224
页数:12
相关论文
共 50 条
  • [1] Systems of conservation laws with third-order Hamiltonian structures
    Evgeny V. Ferapontov
    Maxim V. Pavlov
    Raffaele F. Vitolo
    Letters in Mathematical Physics, 2018, 108 : 1525 - 1550
  • [2] Systems of conservation laws with third-order Hamiltonian structures
    Ferapontov, Evgeny V.
    Pavlov, Maxim V.
    Vitolo, Raffaele F.
    LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (06) : 1525 - 1550
  • [3] A New Third-order Explicit Symplectic Scheme for Hamiltonian Systems
    Liu, Xiao-mei
    Zhu, Shuai
    CURRENT TRENDS IN COMPUTER SCIENCE AND MECHANICAL AUTOMATION, VOL 1, 2017, : 609 - 619
  • [4] Optical media with an imaginary third-order nonlinearity analyzed by Hamiltonian systems
    Fobelets, K
    Thielemans, K
    PHYSICAL REVIEW A, 1996, 53 (06): : 4400 - 4407
  • [5] Hamiltonian Formulation for Continuous Third-order Systems Using Fractional Derivatives
    Alawaideh, Yazen M.
    Hijjawi, Ra'ed S.
    Khalifeh, Jamil M.
    JORDAN JOURNAL OF PHYSICS, 2021, 14 (01): : 35 - 47
  • [6] Hamiltonian dynamics of breathers with third-order dispersion
    Mookherjea, S
    Yariv, A
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2001, 18 (08) : 1150 - 1155
  • [7] On a class of third-order nonlocal Hamiltonian operators
    Casati, M.
    Ferapontov, E. V.
    Pavlov, M. V.
    Vitolo, R. F.
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 138 : 285 - 296
  • [8] REMARKS ON PERIODS OF PLANAR HAMILTONIAN-SYSTEMS
    ROTHE, F
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (01) : 129 - 154
  • [9] Towards the Classification of Homogeneous Third-Order Hamiltonian Operators
    Ferapontov, E. V.
    Pavlov, M. V.
    Vitolo, R. F.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (22) : 6829 - 6855
  • [10] THIRD-ORDER SYSTEMS AND AIZERMANS CONJECTURE
    BERGEN, AR
    BAKER, RA
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1972, AC17 (02) : 220 - +