Technologies for profiling the impact of genomic variants on transcription factor binding

被引:2
|
作者
Leiz, Janna [2 ,3 ,4 ,5 ]
Rutkiewicz, Maria [1 ]
Birchmeier, Carmen [6 ]
Heinemann, Udo [1 ]
Schmidt-Ott, Kai M. [2 ,3 ,4 ,5 ]
机构
[1] Max Delbruck Ctr Mol Med Helmholtz Assoc MDC, Macromol Struct & Interact, Berlin, Germany
[2] Charite Univ Med Berlin, Hindenburgdamm 30, D-12203 Berlin, Germany
[3] Free Univ Berlin, Hindenburgdamm 30, D-12203 Berlin, Germany
[4] Humboldt Univ, Dept Nephrol & Intens Care Med, Hindenburgdamm 30, D-12203 Berlin, Germany
[5] Max Delbruck Ctr Mol Med Helmholtz Assoc MDC, Mol & Translat Kidney Res, Robert Rossle Str 10, D-13125 Berlin, Germany
[6] Max Delbruck Ctr Mol Med Helmholtz Assoc MDC, Dev Biol & Signal Transduct, Berlin, Germany
关键词
transcriptional regulation; genomic variants; TF:DNA binding; binding prediction; DNA-BINDING; PROTEINS; CHROMATIN;
D O I
10.1515/medgen-2021-2073
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Transcription factors (TFs) bind DNA in a sequence-specific manner and thereby regulate target gene expression. TF binding and its regulatory activity is highly context dependent, and is not only determined by specific cell types or differentiation stages but also relies on other regulatory mechanisms, such as DNA and chromatin modifications. Interactions between TFs and their DNA binding sites are critical mediators of phenotypic variation and play important roles in the onset of disease. A continuously growing number of studies therefore attempts to elucidate TF:DNA interactions to gain knowledge about regulatory mechanisms and disease-causing variants. Here we summarize how TF-binding characteristics and the impact of variants can be investigated, how bioinformatic tools can be used to analyze and predict TF:DNA binding, and what additional information can be obtained from the TF protein structure.
引用
收藏
页码:147 / 155
页数:9
相关论文
共 50 条
  • [1] Evaluating the impact of single nucleotide variants on transcription factor binding
    Shi, Wenqiang
    Fornes, Oriol
    Mathelier, Anthony
    Wasserman, Wyeth W.
    NUCLEIC ACIDS RESEARCH, 2016, 44 (21) : 10106 - 10116
  • [3] Quantifying the Impact of Non-coding Variants on Transcription Factor-DNA Binding
    Zhao, Jingkang
    Li, Dongshunyi
    Seo, Jungkyun
    Allen, Andrew S.
    Gordan, Raluca
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, RECOMB 2017, 2017, 10229 : 336 - 352
  • [4] Genomic profiling of the transcription factor Zfp148 and its impact on the p53 pathway
    Zou, Zhiyuan, V
    Gul, Nadia
    Lindberg, Markus
    Bokhari, Abdulmalik A.
    Eklund, Ella M.
    Garellick, Viktor
    Patel, Angana A. H.
    Dzanan, Jozefina J.
    Titmuss, Ben O.
    Le Gal, Kristell
    Johansson, Inger
    Tivesten, Asa
    Forssell-Aronsson, Eva
    Bergo, Martin O.
    Staffas, Anna
    Larsson, Erik
    Sayin, Volkan, I
    Lindahl, Per
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [5] Genomic profiling of the transcription factor Zfp148 and its impact on the p53 pathway
    Zhiyuan V. Zou
    Nadia Gul
    Markus Lindberg
    Abdulmalik A. Bokhari
    Ella M. Eklund
    Viktor Garellick
    Angana A. H. Patel
    Jozefina J. Dzanan
    Ben O. Titmuss
    Kristell Le Gal
    Inger Johansson
    Åsa Tivesten
    Eva Forssell-Aronsson
    Martin O. Bergö
    Anna Staffas
    Erik Larsson
    Volkan I. Sayin
    Per Lindahl
    Scientific Reports, 10
  • [6] ePOSSUM2: A web app for predicting the impact of DNA variants on transcription factor binding
    Proft, S.
    Steinhaus, R.
    Robinson, P. N.
    Seelow, D.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2020, 28 (SUPPL 1) : 673 - 674
  • [7] Multiomic profiling of transcription factor binding and function in human brain
    Loupe, Jacob M.
    Anderson, Ashlyn G.
    Rizzardi, Lindsay F.
    Rodriguez-Nunez, Ivan
    Moyers, Belle
    Trausch-Lowther, Katie
    Jain, Rashmi
    Bunney, William E.
    Bunney, Blynn G.
    Cartagena, Preston
    Sequeira, Adolfo
    Watson, Stanley J.
    Akil, Huda
    Cooper, Gregory M.
    Myers, Richard M.
    NATURE NEUROSCIENCE, 2024, 27 (07) : 1387 - 1399
  • [8] Identification of breast cancer associated variants that modulate transcription factor binding
    Liu, Yunxian
    Walavalkar, Ninad M.
    Dozmorov, Mikhail G.
    Rich, Stephen S.
    Civelek, Mete
    Guertin, Michael J.
    PLOS GENETICS, 2017, 13 (09):
  • [9] INVESTIGATION THE VARIANTS AT THE BINDING SITE OF INFLAMMATORY TRANSCRIPTION FACTOR IN PATIENTS WITH ESRD
    Su, Sui-Lung
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2020, 35 : 374 - 374
  • [10] Disease variants alter transcription factor levels and methylation of their binding sites
    Bonder, Marc Jan
    Luijk, Rene
    Zhernakova, Dania V.
    Moed, Matthijs
    Deelen, Patrick
    Vermaat, Martijn
    van Iterson, Maarten
    van Dijk, Freerk
    van Galen, Michiel
    Bot, Jan
    Slieker, Roderick C.
    Jhamai, P. Mila
    Verbiest, Michael
    Suchiman, H. Eka D.
    Verkerk, Marijn
    van der Breggen, Ruud
    van Rooij, Jeroen
    Lakenberg, Nico
    Arindrarto, Wibowo
    Kielbasa, Szymon M.
    Jonkers, Iris
    van 't Hof, Peter
    Nooren, Irene
    Beekman, Marian
    Deelen, Joris
    van Heemst, Diana
    Zhernakova, Alexandra
    Tigchelaar, Ettje F.
    Swertz, Morris A.
    Hofman, Albert
    Uitterlinden, Andre G.
    Pool, Rene
    van Dongen, Jenny
    Hottenga, Jouke J.
    Stehouwer, Coen D. A.
    van der Kallen, Carla J. H.
    Schalkwijk, Casper G.
    van den Berg, Leonard H.
    van Zwet, Erik W.
    Mei, Hailiang
    Li, Yang
    Lemire, Mathieu
    Hudson, Thomas J.
    Slagboom, P. Eline
    Wijmenga, Cisca
    Veldink, Jan H.
    van Greevenbroek, Marleen M. J.
    van Duijn, Cornelia M.
    Boomsma, Dorret I.
    Isaacs, Aaron
    NATURE GENETICS, 2017, 49 (01) : 131 - 138