Multiscale Clustering for Functional Data

被引:3
|
作者
Lim, Yaeji [1 ]
Oh, Hee-Seok [2 ]
Cheung, Ying Kuen [3 ]
机构
[1] Chung Ang Univ, Dept Appl Stat, Seoul 48513, South Korea
[2] Seoul Natl Univ, Dept Stat, 1 Gwanak Ro, Seoul 08826, South Korea
[3] Columbia Univ, Dept Biostat, New York, NY 10032 USA
基金
新加坡国家研究基金会; 美国国家卫生研究院;
关键词
Empirical mode decomposition; Functional data; High-dimensional data; Multiresolution analysis; Wavelet transform; REGRESSION;
D O I
10.1007/s00357-019-09313-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In an era of massive and complex data, clustering is one of the most important procedures for understanding and analyzing unstructured multivariate data. Classical methods such as K-means and hierarchical clustering, however, are not efficient in grouping data that are high dimensional and have inherent multiscale structures. This paper presents new clustering procedures that can adapt to multiscale characteristics and high dimensionality of data. The proposed methods are based on a novel combination of multiresolution analysis and functional data analysis. As the core of the methodology, a clustering approach using the concept of multiresolution analysis may reflect both the global trend and local activities of data, and functional data analysis handles the high-dimensional data efficiently. Practical algorithms to implement the proposed methods are further discussed. The empirical performance of the proposed methods is evaluated through numerical studies including a simulation study and real data analysis, which demonstrates promising results of the proposed clustering.
引用
收藏
页码:368 / 391
页数:24
相关论文
共 50 条
  • [1] Multiscale Clustering for Functional Data
    Yaeji Lim
    Hee-Seok Oh
    Ying Kuen Cheung
    Journal of Classification, 2019, 36 : 368 - 391
  • [2] Sparse clustering of functional data
    Floriello, Davide
    Vitelli, Valeria
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 154 : 1 - 18
  • [3] Clustering Functional Data
    Thaddeus Tarpey
    Kimberly K. J. Kinateder
    Journal of Classification, 2003, 20 : 093 - 114
  • [4] Functional data clustering: a survey
    Julien Jacques
    Cristian Preda
    Advances in Data Analysis and Classification, 2014, 8 : 231 - 255
  • [5] Functional data clustering: a survey
    Jacques, Julien
    Preda, Cristian
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2014, 8 (03) : 231 - 255
  • [6] Phase and amplitude-based clustering for functional data
    Slaets, Leen
    Claeskens, Gerda
    Hubert, Mia
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (07) : 2360 - 2374
  • [7] Dynamic and Static Enhanced BIRCH for Functional Data Clustering
    Li, Wang
    Li, Hanfang
    Luo, Youxi
    IEEE ACCESS, 2023, 11 : 111448 - 111465
  • [8] Functional clustering of accelerometer data via transformed input variables
    Lim, Yaeji
    Oh, Hee-Seok
    Cheung, Ying Kuen
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2019, 68 (03) : 495 - 520
  • [9] Unsupervised bayesian clustering for functional data
    Juery, Damien
    Abraham, Christophe
    Fontez, Benedicte
    JOURNAL OF THE SFDS, 2014, 155 (02): : 185 - 201
  • [10] Clustering for sparsely sampled functional data
    James, GM
    Sugar, CA
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (462) : 397 - 408