Cohomogeneity one Einstein-Sasaki 5-manifolds

被引:14
作者
Conti, Diego [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
关键词
D O I
10.1007/s00220-007-0286-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider hypersurfaces in Einstein-Sasaki 5-manifolds which are tangent to the characteristic vector field. We introduce evolution equations that can be used to reconstruct the 5-dimensional metric from such a hypersurface, analogous to the (nearly) hypo and half-flat evolution equations in higher dimensions. We use these equations to classify Einstein-Sasaki 5-manifolds of cohomogeneity one.
引用
收藏
页码:751 / 774
页数:24
相关论文
共 21 条
[1]  
[Anonymous], MINIMAL SUBMANIFOLDS
[2]   REAL KILLING SPINORS AND HOLONOMY [J].
BAR, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 154 (03) :509-521
[3]  
BLAIR D. E., 2002, RIEMANNIAN GEOMETRY
[4]   ON CONTACT MANIFOLDS [J].
BOOTHBY, WM ;
WANG, HC .
ANNALS OF MATHEMATICS, 1958, 68 (03) :721-734
[5]   Einstein metrics on spheres [J].
Boyer, CP ;
Galicki, K ;
Kollár, J .
ANNALS OF MATHEMATICS, 2005, 162 (01) :557-580
[6]   On the geometry of Sasakian-Einstein 5-manifolds [J].
Boyer, CP ;
Galicki, K ;
Nakamaye, M .
MATHEMATISCHE ANNALEN, 2003, 325 (03) :485-524
[7]  
Bredon G. E., 1972, PURE APPL MATH, V46
[8]  
Butruille JB, 2005, ANN GLOB ANAL GEOM, V27, P201, DOI 10.1007/s10455-005-1581-x
[9]   Cohomogeneity-one G2-structures [J].
Cleyton, R ;
Swann, A .
JOURNAL OF GEOMETRY AND PHYSICS, 2002, 44 (2-3) :202-220
[10]  
CONTI D, IN PRESS T AM MATH, P5