Thermal Conductivity of Snow, Firn, and Porous Ice From 3-D Image-Based Computations

被引:43
作者
Calonne, Neige [1 ]
Milliancourt, Lucas [2 ,3 ]
Burr, Alexis [2 ,4 ]
Philip, Armelle [2 ]
Martin, Christophe L. [4 ]
Flin, Frederic [1 ]
Geindreau, Christian [3 ]
机构
[1] Univ Toulouse, Univ Grenoble Alpes, CNRS, CNRM,Meteo France,Ctr Etud Neige, Grenoble, France
[2] Univ Grenoble Alpes, CNRS, Grenoble INP Inst Engn, IGE,IRD, Grenoble, France
[3] Univ Grenoble Alpes, 3SR, CNRS, Grenoble INP Inst Engn, Grenoble, France
[4] Univ Grenoble Alpes, CNRS, SIMaP, Grenoble INP Inst Engn, Grenoble, France
关键词
snow; firn; ice; conductivity; microstructure; tomography; TEMPERATURE-GRADIENT METAMORPHISM; MICROSTRUCTURAL EVOLUTION; PHYSICAL-PROPERTIES; GREENLAND; HEAT; SUMMIT; MODEL; GLACIER; CORE; COLD;
D O I
10.1029/2019GL085228
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Estimating thermal conductivity of snow, firn, and porous ice is key for modeling the thermal regime of alpine and polar glaciers. Whereas thermal conductivity of snow was widely investigated, studies on firn and porous ice are very scarce. This study presents the effective thermal conductivity tensor computed from 64 3-D images of microstructures of snow, antarctic firn, and porous ice at -3, -20, and -60 degrees C. We show that, in contrast with snow, conductivity of firn and porous ice correlates linearly with density, is approximately isotropic, and is largely impacted by temperature. We report that performances of commonly used estimates of thermal conductivity vary largely with density. In particular, formulas designed for snow lead to significant underestimations when applied to denser ice structures. We present a new formulation to accurately estimate the thermal conductivity throughout the whole density range, from fresh snow to bubbly ice, and for any temperature conditions encountered in glaciers.
引用
收藏
页码:13079 / 13089
页数:11
相关论文
共 59 条
[11]   Numerical and experimental investigations of the effective thermal conductivity of snow [J].
Calonne, N. ;
Flin, F. ;
Morin, S. ;
Lesaffre, B. ;
du Roscoat, S. Rolland ;
Geindreau, C. .
GEOPHYSICAL RESEARCH LETTERS, 2011, 38
[12]   Macroscopic Modeling for Heat and Water Vapor Transfer in Dry Snow by Homogenization [J].
Caonne, Neige ;
Geindreau, Christian ;
Flin, Frederic .
JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (47) :13393-13403
[13]   Three-dimensional snow images by X-ray microtomography [J].
Coléou, C ;
Lesaffre, B ;
Brzoska, JB ;
Ludwig, W ;
Boller, E .
ANNALS OF GLACIOLOGY, VOL 32, 2001, 2001, 32 :75-81
[14]  
Coleou C., 2001, ESRF NEWSLETTER, V35, P24
[15]  
Cummings E., 2013, DEV FINITE ELEMENT F
[16]   Past temperatures directly from the Greenland Ice Sheet [J].
DahlJensen, D ;
Mosegaard, K ;
Gundestrup, N ;
Clow, GD ;
Johnsen, SJ ;
Hansen, AW ;
Balling, N .
SCIENCE, 1998, 282 (5387) :268-271
[17]   Three-dimensional geometric measurements of snow microstructural evolution under isothermal conditions [J].
Flin, F ;
Brzoska, JB ;
Lesaffre, B ;
Coléou, CC ;
Pieritz, RA .
ANNALS OF GLACIOLOGY, VOL 38, 2004, 2004, 38 :39-44
[18]   THERMOPHYSICAL PROPERTIES OF ICE, SNOW, AND SEA ICE [J].
FUKUSAKO, S .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1990, 11 (02) :353-372
[19]   MECHANISMS OF FAST-FLOW IN JAKOBSHAVNS-ISBRAE, WEST GREENLAND .2. MODELING OF ENGLACIAL TEMPERATURES [J].
FUNK, M ;
ECHELMEYER, K ;
IKEN, A .
JOURNAL OF GLACIOLOGY, 1994, 40 (136) :569-585
[20]   Variability of sulfate signal in ice core records based on five replicate cores [J].
Gautier, E. ;
Savarino, J. ;
Erbland, J. ;
Lanciki, A. ;
Possenti, P. .
CLIMATE OF THE PAST, 2016, 12 (01) :103-113