Tangent normalization for somatic copy-number inference in cancer genome analysis

被引:5
|
作者
Gao, Galen F. [1 ]
Oh, Coyin [1 ,2 ,3 ]
Saksena, Gordon [1 ]
Deng, Davy [1 ,3 ,4 ]
Westlake, Lindsay C. [1 ]
Hill, Barbara A. [1 ]
Reich, Michael [1 ,5 ]
Schumacher, Steven E. [1 ,3 ]
Berger, Ashton C. [1 ,3 ]
Carter, Scott L. [1 ,2 ,3 ]
Cherniack, Andrew D. [1 ]
Meyerson, Matthew [1 ,3 ,6 ]
Tabak, Barbara [1 ,3 ]
Beroukhim, Rameen [1 ,3 ,7 ]
Getz, Gad [1 ,8 ,9 ]
机构
[1] Broad Inst MIT & Harvard, Canc Program, Cambridge, MA 02142 USA
[2] Harvard Med Sch, Harvard MIT Div Hlth Sci & Technol, Boston, MA 02115 USA
[3] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA
[4] Univ Calif, La Jolla, CA USA
[5] Univ Calif San Diego, Dept Med, Div Med Genet, La Jolla, CA 92093 USA
[6] Harvard Med Sch, Dept Genet, Boston, MA 02115 USA
[7] Harvard Med Sch, Dept Med, Boston, MA 02115 USA
[8] Harvard Med Sch, Dept Pathol, Boston, MA 02115 USA
[9] Massachusetts Gen Hosp, Dept Pathol, Boston, MA 02114 USA
基金
美国国家卫生研究院;
关键词
DISCOVERY; POPULATIONS; FRAMEWORK; PATTERNS; ACCURATE; MUTATION;
D O I
10.1093/bioinformatics/btac586
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Somatic copy-number alterations (SCNAs) play an important role in cancer development. Systematic noise in sequencing and array data present a significant challenge to the inference of SCNAs for cancer genome analyses. As part of The Cancer Genome Atlas, the Broad Institute Genome Characterization Center developed the Tangent normalization method to generate copy-number profiles using data from single-nucleotide polymorphism (SNP) arrays and whole-exome sequencing (WES) technologies for over 10 000 pairs of tumors and matched normal samples. Here, we describe the Tangent method, which uses a unique linear combination of normal samples as a reference for each tumor sample, to subtract systematic errors that vary across samples. We also describe a modification of Tangent, called Pseudo-Tangent, which enables denoising through comparisons between tumor profiles when few normal samples are available. Results: Tangent normalization substantially increases signal-to-noise ratios (SNRs) compared to conventional normalization methods in both SNP array and WES analyses. Tangent and Pseudo-Tangent normalizations improve the SNR by reducing noise with minimal effect on signal and exceed the contribution of other steps in the analysis such as choice of segmentation algorithm. Tangent and Pseudo-Tangent are broadly applicable and enable more accurate inference of SCNAs from DNA sequencing and array data.
引用
收藏
页码:4677 / 4686
页数:10
相关论文
共 50 条
  • [41] Extending genome-wide association studies to copy-number variation
    McCarroll, Steven A.
    HUMAN MOLECULAR GENETICS, 2008, 17 : R135 - R142
  • [42] MEDICC2: whole-genome doubling aware copy-number phylogenies for cancer evolution
    Tom L. Kaufmann
    Marina Petkovic
    Thomas B. K. Watkins
    Emma C. Colliver
    Sofya Laskina
    Nisha Thapa
    Darlan C. Minussi
    Nicholas Navin
    Charles Swanton
    Peter Van Loo
    Kerstin Haase
    Maxime Tarabichi
    Roland F. Schwarz
    Genome Biology, 23
  • [43] Comparative analysis of somatic copy-number alterations across different human cancer types reveals two distinct classes of breakpoint hotspots
    Li, Yudong
    Zhang, Li
    Ball, Robyn L.
    Liang, Xinle
    Li, Jianrong
    Lin, Zhenguo
    Liang, Han
    HUMAN MOLECULAR GENETICS, 2012, 21 (22) : 4957 - 4965
  • [44] Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking
    Weischenfeldt, Joachim
    Dubash, Taronish
    Drainas, Alexandros P.
    Mardin, Balca R.
    Chen, Yuanyuan
    Stuetz, Adrian M.
    Waszak, Sebastian M.
    Bosco, Graziella
    Halvorsen, Ann Rita
    Raeder, Benjamin
    Efthymiopoulos, Theocharis
    Erkek, Serap
    Siegl, Christine
    Brenner, Hermann
    Brustugun, Odd Terje
    Dieter, Sebastian M.
    Northcott, Paul A.
    Petersen, Iver
    Pfister, Stefan M.
    Schneider, Martin
    Solberg, Steinar K.
    Thunissen, Erik
    Weichert, Wilko
    Zichner, Thomas
    Thomas, Roman
    Peifer, Martin
    Helland, Aslaug
    Ball, Claudia R.
    Jechlinger, Martin
    Sotillo, Rocio
    Glimm, Hanno
    Korbel, Jan O.
    NATURE GENETICS, 2017, 49 (01) : 65 - 74
  • [45] Involvement of cyclin D3 in liver metastasis of colorectal cancer, revealed by genome-wide copy-number analysis
    Tanami, H
    Tsuda, H
    Okabe, S
    Iwai, T
    Sugihara, K
    Imoto, I
    Inazawa, J
    LABORATORY INVESTIGATION, 2005, 85 (09) : 1118 - 1129
  • [46] Histotype-specific copy-number alterations in ovarian cancer
    Ruby YunJu Huang
    Geng Bo Chen
    Noriomi Matsumura
    Hung-Cheng Lai
    Seiichi Mori
    Jingjing Li
    Meng Kang Wong
    Ikuo Konishi
    Jean-Paul Thiery
    Liang Goh
    BMC Medical Genomics, 5
  • [47] MEDICC2: whole-genome doubling aware copy-number phylogenies for cancer evolution
    Kaufmann, Tom L.
    Petkovic, Marina
    Watkins, Thomas B. K.
    Colliver, Emma C.
    Laskina, Sofya
    Thapa, Nisha
    Minussi, Darlan C.
    Navin, Nicholas
    Swanton, Charles
    Van Loo, Peter
    Haase, Kerstin
    Tarabichi, Maxime
    Schwarz, Roland F.
    GENOME BIOLOGY, 2022, 23 (01)
  • [48] Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking
    Joachim Weischenfeldt
    Taronish Dubash
    Alexandros P Drainas
    Balca R Mardin
    Yuanyuan Chen
    Adrian M Stütz
    Sebastian M Waszak
    Graziella Bosco
    Ann Rita Halvorsen
    Benjamin Raeder
    Theocharis Efthymiopoulos
    Serap Erkek
    Christine Siegl
    Hermann Brenner
    Odd Terje Brustugun
    Sebastian M Dieter
    Paul A Northcott
    Iver Petersen
    Stefan M Pfister
    Martin Schneider
    Steinar K Solberg
    Erik Thunissen
    Wilko Weichert
    Thomas Zichner
    Roman Thomas
    Martin Peifer
    Aslaug Helland
    Claudia R Ball
    Martin Jechlinger
    Rocio Sotillo
    Hanno Glimm
    Jan O Korbel
    Nature Genetics, 2017, 49 : 65 - 74
  • [49] Somatic Copy Number Alterations in Human Cancers: An Analysis of Publicly Available Data From The Cancer Genome Atlas
    Harbers, Luuk
    Agostini, Federico
    Nicos, Marcin
    Poddighe, Dimitri
    Bienko, Magda
    Crosetto, Nicola
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [50] Copy-number methods dramatically underestimate loss of heterozygosity in cancer
    Calhoun, Eric S.
    Gallmeier, Eike
    Cunningham, Steven C.
    Eshleman, James R.
    Hruban, Ralph H.
    Kern, Scott E.
    GENES CHROMOSOMES & CANCER, 2006, 45 (11): : 1070 - 1071