The cohomology of Bestvina-Brady groups

被引:13
作者
Leary, Ian J. [1 ,2 ]
Saadetoglu, Muge [2 ,3 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Univ Southampton, Sch Math, Southampton SO17 1BJ, Hants, England
[3] Eastern Mediterranean Univ, Dept Math, AS277, Gazimagusa 10, Mersin, Turkey
基金
美国国家科学基金会;
关键词
Cohomological dimension; cohomology ring; Bestvina-Brady group; Artin group; SIGMA-INVARIANTS; SUBGROUPS; HOMOLOGY;
D O I
10.4171/GGD/118
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each subcomplex of the standard CW-structure on any torus, we compute the homology of a certain infinite cyclic regular covering space. In all cases when the homology is finitely generated, we also compute the cohomology ring. For aspherical subcomplexes of the torus, our computation gives the homology of the groups introduced by M. Bestvina and N. Brady in [3]. We compute the cohomological dimension of each of these groups.
引用
收藏
页码:121 / 138
页数:18
相关论文
共 17 条
[1]  
[Anonymous], 1982, GRADUATE TEXTS MATH
[2]   THE TOPOLOGY OF DISCRETE-GROUPS [J].
BAUMSLAG, G ;
DYER, E ;
HELLER, A .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1980, 16 (01) :1-47
[3]   Morse theory and finiteness properties of groups [J].
Bestvina, M ;
Brady, N .
INVENTIONES MATHEMATICAE, 1997, 129 (03) :445-470
[4]  
BESTVINA M, 1993, LONDON MATH SOC LECT, V181, P19
[5]  
Bieri R., 1976, Queen Mary College Mathematics Notes
[6]   The Bestvina-Brady construction revisited:: Geometric computation of Σ-invariants for right-angled Artin groups [J].
Bux, KU ;
Gonzalez, C .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 :793-801
[7]   Presentations for subgroups of Artin groups [J].
Dicks, W ;
Leary, IJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (02) :343-348
[8]  
Dicks W., 1998, LONDON MATH SOC LECT, V252, P124
[9]   On the virtual cohomological dimensions of Coxeter groups [J].
Dranishnikov, AN .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (07) :1885-1891
[10]  
Hatcher A., 2002, Algebraic topology