On Korn's Inequality

被引:52
作者
Ciarlet, Philippe G. [1 ]
机构
[1] City Univ Hong Kong, Dept Mathemat, Kowloon, Hong Kong, Peoples R China
关键词
Korn inequality; J. L. Lions lemma;
D O I
10.1007/s11401-010-0606-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The author first reviews the classical Korn inequality and its proof. Following recent works of S. Kesavan, P. Ciarlet, Jr., and the author, it is shown how the Korn inequality can be recovered by an entirely different proof. This new proof hinges on appropriate weak versions of the classical Poincare and Saint-Venant lemma. In fine, both proofs essentially depend on a crucial lemma of J. L. Lions, recalled at the beginning of this paper.
引用
收藏
页码:607 / 618
页数:12
相关论文
共 24 条
[1]  
AMROUCHE C, 1994, CZECH MATH J, V44, P109
[2]   On the characterizations of matrix fields as linearized strain tensor fields [J].
Amrouche, Cherif ;
Ciarlet, Philippe G. ;
Gratie, Liliana ;
Kesavan, Srinivasan .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (02) :116-132
[3]  
[Anonymous], 1969, QUELQUES METHODES RE
[4]  
[Anonymous], 1995, Functional Analysis. Classics in Mathematics
[5]  
[Anonymous], 1973, LECT NOTES MATH
[6]  
Borchers W., 1990, Hokkaido Math. J., V19, P67
[7]   Another approach to linearized elasticity and a new proof of Korn's inequality [J].
Ciarlet, PG ;
Ciarlet, P .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (02) :259-271
[8]  
Duvaut G., 1972, INEQUATIONS MECANIQU, P387
[9]  
Flanders H., 1989, Differential Forms with Applications to the Physical Sciences
[10]   ON THE BOUNDARY-VALUE PROBLEMS OF THE THEORY OF ELASTICITY AND KORN INEQUALITY [J].
FRIEDRICHS, KO .
ANNALS OF MATHEMATICS, 1947, 48 (02) :441-471