Shape-Based Tumor Retrieval in Mammograms Using Relevance-Feedback Techniques

被引:0
作者
Tzikopoulos, Stylianos D. [1 ]
Georgiou, Harris V. [1 ]
Mavroforakis, Michael E. [2 ]
Theodoridis, Sergios [1 ]
机构
[1] Natl & Kapodistrian Univ Athens, Dept Informat & Telecommun, Athens 15784, Greece
[2] Univ Houston, Dept Comp Sci, Houston, TX 77204 USA
来源
ARTIFICIAL NEURAL NETWORKS-ICANN 2010, PT I | 2010年 / 6352卷
关键词
IMAGE RETRIEVAL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an experimental "morphological analysis" retrieval system for mammograms, using Relevance-Feedback techniques. The features adopted are first-order statistics of the Normalized Radial Distance, extracted from the annotated mass boundary. The system is evaluated on an extensive dataset of 2274 masses of the DDSM database, which involves 7 distinct classes. The experiments verify that the involvement of the radiologist as part of the retrieval process improves the results, even for such a hard classification task, reaching the precision rate of almost 90%. Therefore, Relevance-Feedback can be employed as a very useful complementary tool to a Computer Aided Diagnosis system.
引用
收藏
页码:251 / +
页数:3
相关论文
共 28 条
  • [1] [Anonymous], 2011, DIGITAL IMAGE PROCES
  • [2] [Anonymous], CONTENT BASED IMAGE
  • [3] [Anonymous], 2000, P 5 INT WORKSH DIG M
  • [4] Classifying mammographic mass shapes using the wavelet transform modulus-maxima method
    Bruce, LM
    Adhami, RR
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1999, 18 (12) : 1170 - 1177
  • [5] CHEN G, 2008, P INT C AUDIO LANGUA
  • [6] CRUCIANU M, RELEVANCE FEEDBACK I
  • [7] DATTA R, 2005, P 7 ACM SIGMM INT WO, P10
  • [8] DRUCKER H, 2001, RELEVANCE FEEDBACK U, P122
  • [9] A similarity learning approach to content-based image retrieval: Application to digital mammography
    El-Naqa, I
    Yang, YY
    Galatsanos, NP
    Nishikawa, RM
    Wernick, MN
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (10) : 1233 - 1244
  • [10] Multi-scaled morphological features for the characterization of mammographic masses using statistical classification schemes
    Georgiou, Harris
    Mavroforakis, Michael
    Dimitropoulos, Nikos
    Cavouras, Dionisis
    Theodoridis, Sergios
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2007, 41 (01) : 39 - 55