Maximum entropy formalism for the analytic continuation of matrix-valued Green's functions

被引:74
作者
Kraberger, Gernot J. [1 ]
Triebl, Robert [1 ]
Zingl, Manuel [1 ]
Aichhorn, Markus [1 ]
机构
[1] Graz Univ Technol, NAWI Graz, Inst Theoret & Computat Phys, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
QUANTUM MONTE-CARLO; INFINITE DIMENSIONS; HUBBARD-MODEL; PERTURBATION EXPANSION; IMAGE-RECONSTRUCTION; SIMULATIONS; COMPUTATION; ALGORITHM; SPECTRA; SYSTEMS;
D O I
10.1103/PhysRevB.96.155128
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a generalization of the maximum entropy method to the analytic continuation of matrix-valued Green's functions. To treat off-diagonal elements correctly based on Bayesian probability theory, the entropy term has to be extended for spectral functions that are possibly negative in some frequency ranges. In that way, all matrix elements of the Green's function matrix can be analytically continued; we introduce a computationally cheap element-wise method for this purpose. However, this method cannot ensure important constraints on the mathematical properties of the resulting spectral functions, namely positive semidefiniteness and Hermiticity. To improve on this, we present a full matrix formalism, where all matrix elements are treated simultaneously. We show the capabilities of these methods using insulating and metallic dynamical mean-field theory (DMFT) Green's functions as test cases. Finally, we apply the methods to realistic material calculations for LaTiO3, where off-diagonal matrix elements in the Green's function appear due to the distorted crystal structure.
引用
收藏
页数:14
相关论文
共 75 条
[1]   TRIQS/DFTTools: A TRIQS application for ab initio calculations of correlated materials [J].
Aichhorn, Markus ;
Pourovskii, Leonid ;
Seth, Priyanka ;
Vildosola, Veronica ;
Zingl, Manuel ;
Peil, Oleg E. ;
Deng, Xiaoyu ;
Mravlje, Jernej ;
Kraberger, Gernot J. ;
Martins, Cyril ;
Ferrero, Michel ;
Parcollet, Olivier .
COMPUTER PHYSICS COMMUNICATIONS, 2016, 204 :200-208
[2]   Importance of electronic correlations for structural and magnetic properties of the iron pnictide superconductor LaFeAsO [J].
Aichhorn, Markus ;
Pourovskii, Leonid ;
Georges, Antoine .
PHYSICAL REVIEW B, 2011, 84 (05)
[3]   Dynamical mean-field theory within an augmented plane-wave framework: Assessing electronic correlations in the iron pnictide LaFeAsO [J].
Aichhorn, Markus ;
Pourovskii, Leonid ;
Vildosola, Veronica ;
Ferrero, Michel ;
Parcollet, Olivier ;
Miyake, Takashi ;
Georges, Antoine ;
Biermann, Silke .
PHYSICAL REVIEW B, 2009, 80 (08)
[4]   Full orbital calculation scheme for materials with strongly correlated electrons [J].
Anisimov, VI ;
Kondakov, DE ;
Kozhevnikov, AV ;
Nekrasov, IA ;
Pchelkina, ZV ;
Allen, JW ;
Mo, SK ;
Kim, HD ;
Metcalf, P ;
Suga, S ;
Sekiyama, A ;
Keller, G ;
Leonov, I ;
Ren, X ;
Vollhardt, D .
PHYSICAL REVIEW B, 2005, 71 (12)
[5]  
[Anonymous], 1991, Maximum Entropy in Action
[6]  
[Anonymous], ARXIVCONDMAT0403055
[7]   Projected regression method for solving Fredholm integral equations arising in the analytic continuation problem of quantum physics [J].
Arsenault, Louis-Francois ;
Neuberg, Richard ;
Hannah, Lauren A. ;
Millis, Andrew J. .
INVERSE PROBLEMS, 2017, 33 (11)
[8]   Fast and efficient stochastic optimization for analytic continuation [J].
Bao, F. ;
Tang, Y. ;
Summers, M. ;
Zhang, G. ;
Webster, C. ;
Scarola, V. ;
Maier, T. A. .
PHYSICAL REVIEW B, 2016, 94 (12)
[9]   Reliable Pade analytical continuation method based on a high-accuracy symbolic computation algorithm [J].
Beach, KSD ;
Gooding, RJ ;
Marsiglio, F .
PHYSICAL REVIEW B, 2000, 61 (08) :5147-5157
[10]   Algorithms for optimized maximum entropy and diagnostic tools for analytic continuation [J].
Bergeron, Dominic ;
Tremblay, A. -M. S. .
PHYSICAL REVIEW E, 2016, 94 (02)