Solutions of a non-classical Stefan problem with nonlinear thermal coefficients and a Robin boundary condition

被引:4
作者
Bougoffa, Lazhar [1 ]
Khanfer, Ammar [1 ,2 ]
机构
[1] Imam Mohammad Ibn Saud Islam Univ, Dept Math & Stat, POB 90950, Riyadh 11623, Saudi Arabia
[2] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 06期
关键词
boundary value problem; Stefan problem; explicit solution; existence of solutions; CONDUCTIVITY;
D O I
10.3934/math.2021387
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Solutions of similarity-type for a nonlinear non-classical Stefan problem with temperaturedependent thermal conductivity and a Robin boundary condition are obtained. The analysis of several particular cases are given when the thermal conductivity L(f) and specific heat N(f) are linear in temperature such that L(f) = alpha + delta f with N(f) = beta + gamma f. Existence of a similarity type solution also obtained for the general problem by proving the lower and upper bounds of the solution.
引用
收藏
页码:6569 / 6579
页数:11
相关论文
共 50 条
  • [41] A numerical solution of the Stefan problem with a Neumann-type boundary condition by enthalpy method
    Esen, A
    Kutluay, S
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (02) : 321 - 329
  • [42] Numerical simulation of a non-classical moving boundary problem with control function and generalized latent heat as a function of moving interface
    Jitendra
    Chaurasiya, Vikas
    Rai, Kabindra Nath
    Singh, Jitendra
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2023, 78 (12): : 1091 - 1105
  • [43] An Analysis of the One-Phase Stefan Problem with Variable Thermal Coefficients of Order p
    Bougoffa, Lazhar
    Bougouffa, Smail
    Khanfer, Ammar
    AXIOMS, 2023, 12 (05)
  • [44] Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face
    Bollati, Julieta
    Tarzia, Domingo A.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (02):
  • [45] Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face
    Julieta Bollati
    Domingo A. Tarzia
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [46] Iterative numerical method for nonlinear moving boundary problem with a convective boundary condition
    Ali, V. P. Rabeeb
    Awasthi, Ashish
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2024, 49 (02):
  • [47] EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A FRACTIONAL BOUNDARY VALUE PROBLEM WITH DIRICHLET BOUNDARY CONDITION
    Graef, John R.
    Kong, Lingju
    Kong, Qingkai
    Wang, Min
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2013, (55) : 1 - 11
  • [48] Existence of solutions for a nonlinear fractional p-Laplacian boundary value problem
    Merzoug, I.
    Guezane-Lakoud, A.
    Khaldi, R.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (03) : 1099 - 1106
  • [49] Existence of solutions for a nonlinear fractional p-Laplacian boundary value problem
    I. Merzoug
    A. Guezane-Lakoud
    R. Khaldi
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 1099 - 1106
  • [50] NABLA FRACTIONAL BOUNDARY VALUE PROBLEM WITH A NON-LOCAL BOUNDARY CONDITION
    Gopal, N. S.
    Jonnalagadda, J. M.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2024, 14 (01): : 206 - 222