Tungsten in Washington State surface waters

被引:19
作者
Steenstra, Philip [1 ]
Strigul, Nikolay [1 ]
Harrison, John [1 ]
机构
[1] Washington State Univ Vancouver, Sch Environm Sci, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
关键词
Scheelite; Wolframite; W; Heavy metal; SOLUBILITY; GROWTH;
D O I
10.1016/j.chemosphere.2019.125151
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
At high concentrations, tungsten can be toxic to humans, animals, and the environment, though little is known about natural, aqueous tungsten in surface waters. To improve understanding and develop a model predicting tungsten concentrations, we collected water and sediment from 77 water bodies in 20 watersheds in Washington State, USA. We found aqueous tungsten concentrations spanning two orders of magnitude (10.3 ng L-1 - 2.05 mu g L-1) with average tungsten concentrations in both water and sediments more than two-fold higher in watersheds with tungsten-bearing underlying rock types (average: 0.217 mu g L-1, 0.669 mg kg(-1); range: 0.010-2.05 mu g L-1, 0.0713-4.691 mg kg(-1) for surface waters and sediments, respectively) than in watersheds without such underlying geology (average: 0.068 mu g L-1, 0.352 mg kg(-1); range: 0.010-0.211 mu g L-1, 0.0349-2.399 mg kg(-1) for surface waters and sediments, respectively). Aqueous concentrations of tungsten significantly correlated with beryllium (Be) and copper (Cu) (R-2 = 0.31, 0.41, respectively) and a multiple linear regression model using Be and Cu explained 65% of the variance in measured aqueous tungsten concentrations. Applying this model to existing Be and Cu data from 19 sites across the Pacific Northwest resulted in predicted tungsten concentrations ranging from 0.116 to 0.458 mu g L-1. These predicted concentrations along with our measured concentrations indicate none of these sites were close to the drinking water standard for tungsten set by the former Soviet Union-the only country so far to set limits for tungsten in drinking water (50 mu g L-1). (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 40 条
[21]   Tungsten Distribution in Soil and Rice in the Vicinity of the World's Largest and Longest-Operating Tungsten Mine in China [J].
Lin, Chunye ;
Li, Ruiping ;
Cheng, Hongguang ;
Wang, Jing ;
Shao, Xiao .
PLOS ONE, 2014, 9 (03)
[22]   Metals in Urine and Diabetes in US Adults [J].
Menke, Andy ;
Guallar, Eliseo ;
Cowie, Catherine C. .
DIABETES, 2016, 65 (01) :164-171
[23]   Geochemistry of Tungsten and Arsenic in Aquifer Systems: A Comparative Study of Groundwaters from West Bengal, India, and Nevada, USA [J].
Mohajerin, T. Jade ;
Neal, Andrew W. ;
Telfeyan, Katherine ;
Sasihharan, Sankar M. ;
Ford, Sophie ;
Yang, Ningfang ;
Chevis, Darren A. ;
Grimm, Deborah A. ;
Datta, Saugata ;
White, Christopher D. ;
Johannesson, Karen H. .
WATER AIR AND SOIL POLLUTION, 2014, 225 (01)
[24]  
Pyatt Professor F.B., 2004, EVALUATION POTENTIAL, V3, P6
[25]  
Salminen R., 2018, GEOCHEMICAL ATLAS EU
[26]   Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada [J].
Seiler, RL ;
Stollenwerk, KG ;
Garbarino, JR .
APPLIED GEOCHEMISTRY, 2005, 20 (02) :423-441
[27]   Comparison of Size and Geography of Airborne Tungsten Particles in Fallon, Nevada, and Sweet Home, Oregon, with Implications for Public Health [J].
Sheppard, Paul R. ;
Bierman, Brian J. ;
Rhodes, Kent ;
Ridenour, Gary ;
Witten, Mark L. .
JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH, 2012, 2012
[28]   Effects of tungsten on environmental systems [J].
Strigul, N ;
Koutsospyros, A ;
Arienti, P ;
Christodoulatos, C ;
Dermatas, D ;
Braida, W .
CHEMOSPHERE, 2005, 61 (02) :248-258
[29]  
Strigul N., 2009, Land Contamination & Reclamation, V17, P189, DOI 10.2462/09670513.923
[30]   Does speciation matter for tungsten ecotoxicology? [J].
Strigul, Nikolay .
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2010, 73 (06) :1099-1113