Gromov-Witten invariants of local P2 andmodular forms

被引:3
作者
Coates, Tom [1 ]
Iritani, Hiroshi [2 ]
机构
[1] Imperial Coll London, Dept Math, London, England
[2] Kyoto Univ, Grad Sch Sci, Dept Math, Kyoto, Japan
基金
英国工程与自然科学研究理事会; 欧洲研究理事会; 日本学术振兴会; 美国国家科学基金会;
关键词
QUANTUM COHOMOLOGY; CREPANT RESOLUTIONS; MIRROR SYMMETRY; HODGE STRUCTURE; CYCLES; MODEL;
D O I
10.1215/21562261-2021-0010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a sheaf of Fock spaces over the moduli space of elliptic curves E-y with Gamma(1)(3)-level structure, arising from geometric quantization of H-1(E-y), and a global section of this Fock sheaf. The global section coincides, near appropriate limit points, with the Gromov-Witten potentials of local P-2 and of the orbifold [C-3/mu(3)]. This proves that the Gromov-Witten potentials of local P-2 are quasimodular functions for the group Gamma(1)(3), as predicted by Aganagic, Bouchard, and Klemm, and it proves the crepant resolution conjecture for [C-3/mu(3)] in all genera.
引用
收藏
页码:543 / 706
页数:164
相关论文
共 50 条
[41]   Determining F-theory Matter Via Gromov-Witten Invariants [J].
Kashani-Poor, Amir-Kian .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 386 (02) :1155-1207
[42]   Theta functions, broken lines and 2-marked log Gromov-Witten invariants [J].
Graefnitz, Tim .
MANUSCRIPTA MATHEMATICA, 2025, 176 (04)
[43]   A PROOF OF N. TAKAHASHI'S CONJECTURE FOR (P2, E) AND A REFINED SHEAVES/GROMOV-WITTEN CORRESPONDENCE [J].
Bousseau, Pierrick .
DUKE MATHEMATICAL JOURNAL, 2023, 172 (15) :2895-2955
[44]   Open Gromov-Witten Invariants and Superpotentials for Semi-Fano Toric Surfaces [J].
Chan, Kwokwai ;
Lau, Siu-Cheong .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (14) :3759-3789
[45]   Blow-up formulae of high genus Gromov-Witten invariants for threefolds [J].
He, Weiqiang ;
Hu, Jianxun ;
Ke, Hua-Zhong ;
Qi, Xiaoxia .
MATHEMATISCHE ZEITSCHRIFT, 2018, 290 (3-4) :857-872
[46]   K-theoretic Gromov-Witten invariants of line degrees on flag varieties [J].
Buch, Anders S. ;
Chen, Linda ;
Xu, Weihong .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2024, 39 (33)
[47]   Two point extremal Gromov-Witten invariants of Hilbert schemes of points on surfaces [J].
Li, Jun ;
Li, Wei-Ping .
MATHEMATISCHE ANNALEN, 2011, 349 (04) :839-869
[48]   Gromov-Witten invariants of the Hilbert schemes of points of a K3 surface [J].
Oberdieck, Georg .
GEOMETRY & TOPOLOGY, 2018, 22 (01) :323-437
[49]   Orbifold Gromov-Witten Invariants of Weighted Blow-up at Smooth Points [J].
He, Wei Qiang ;
Hu, Jian Xun .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (05) :825-846
[50]   Topological recursion, topological quantum field theory and Gromov-Witten invariants of BG [J].
Serrano, Daniel Hernandez .
REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (04) :1443-1468