共 50 条
Gromov-Witten invariants of local P2 andmodular forms
被引:2
作者:
Coates, Tom
[1
]
Iritani, Hiroshi
[2
]
机构:
[1] Imperial Coll London, Dept Math, London, England
[2] Kyoto Univ, Grad Sch Sci, Dept Math, Kyoto, Japan
基金:
日本学术振兴会;
欧洲研究理事会;
英国工程与自然科学研究理事会;
美国国家科学基金会;
关键词:
QUANTUM COHOMOLOGY;
CREPANT RESOLUTIONS;
MIRROR SYMMETRY;
HODGE STRUCTURE;
CYCLES;
MODEL;
D O I:
10.1215/21562261-2021-0010
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We construct a sheaf of Fock spaces over the moduli space of elliptic curves E-y with Gamma(1)(3)-level structure, arising from geometric quantization of H-1(E-y), and a global section of this Fock sheaf. The global section coincides, near appropriate limit points, with the Gromov-Witten potentials of local P-2 and of the orbifold [C-3/mu(3)]. This proves that the Gromov-Witten potentials of local P-2 are quasimodular functions for the group Gamma(1)(3), as predicted by Aganagic, Bouchard, and Klemm, and it proves the crepant resolution conjecture for [C-3/mu(3)] in all genera.
引用
收藏
页码:543 / 706
页数:164
相关论文
共 50 条