Gromov-Witten invariants of local P2 andmodular forms

被引:2
作者
Coates, Tom [1 ]
Iritani, Hiroshi [2 ]
机构
[1] Imperial Coll London, Dept Math, London, England
[2] Kyoto Univ, Grad Sch Sci, Dept Math, Kyoto, Japan
基金
日本学术振兴会; 欧洲研究理事会; 英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
QUANTUM COHOMOLOGY; CREPANT RESOLUTIONS; MIRROR SYMMETRY; HODGE STRUCTURE; CYCLES; MODEL;
D O I
10.1215/21562261-2021-0010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a sheaf of Fock spaces over the moduli space of elliptic curves E-y with Gamma(1)(3)-level structure, arising from geometric quantization of H-1(E-y), and a global section of this Fock sheaf. The global section coincides, near appropriate limit points, with the Gromov-Witten potentials of local P-2 and of the orbifold [C-3/mu(3)]. This proves that the Gromov-Witten potentials of local P-2 are quasimodular functions for the group Gamma(1)(3), as predicted by Aganagic, Bouchard, and Klemm, and it proves the crepant resolution conjecture for [C-3/mu(3)] in all genera.
引用
收藏
页码:543 / 706
页数:164
相关论文
共 50 条
[31]   Gromov-Witten theory of complete intersections via nodal invariants [J].
Arguz, Hulya ;
Bousseau, Pierrick ;
Pandharipande, Rahul ;
Zvonkine, Dimitri .
JOURNAL OF TOPOLOGY, 2023, 16 (01) :264-343
[32]   GROMOV-WITTEN INVARIANTS FOR G/B AND PONTRYAGIN PRODUCT FOR ΩK [J].
Leung, Naichung Conan ;
Li, Changzheng .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) :2567-2599
[33]   Loop Equations for Gromov-Witten Invariant of P1 [J].
Borot, Gaetan ;
Norbury, Paul .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2019, 15
[34]   Energy bounds and vanishing results for the Gromov-Witten invariants of the projective space [J].
Zinger, Aleksey .
JOURNAL OF GEOMETRY AND PHYSICS, 2019, 145
[35]   The Abelian/Nonabelian Correspondence and Gromov-Witten Invariants of Blow-Ups [J].
Coates, Tom ;
Lutz, Wendelin ;
Shafi, Qaasim .
FORUM OF MATHEMATICS SIGMA, 2022, 10
[36]   DESCENDANT LOG GROMOV-WITTEN INVARIANTS FOR TORIC VARIETIES AND TROPICAL CURVES [J].
Mandel, Travis ;
Ruddat, Helge .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (02) :1109-1152
[37]   The Gromov-Witten invariants of the Hilbert schemes of points on surfaces with pg > 0 [J].
Hu, Jianxun ;
Li, Wei-Ping ;
Qin, Zhenbo .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (01)
[38]   Gromov-Witten invariants of Hilbert schemes of two points on elliptic surfaces [J].
Alhwaimel, Mazen M. ;
Qin, Zhenbo .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2022, 33 (10N11)
[39]   Gromov-Witten Invariants of the Hilbert Scheme of Two Points on a Hirzebruch Surface [J].
Fu, Yong .
MICHIGAN MATHEMATICAL JOURNAL, 2018, 67 (04) :675-713
[40]   K-theoretic Gromov-Witten Invariants of Lines in Homogeneous Spaces [J].
Li, Changzheng ;
Mihalcea, Leonardo C. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (17) :4625-4664