Gromov-Witten invariants of local P2 andmodular forms

被引:3
作者
Coates, Tom [1 ]
Iritani, Hiroshi [2 ]
机构
[1] Imperial Coll London, Dept Math, London, England
[2] Kyoto Univ, Grad Sch Sci, Dept Math, Kyoto, Japan
基金
英国工程与自然科学研究理事会; 欧洲研究理事会; 日本学术振兴会; 美国国家科学基金会;
关键词
QUANTUM COHOMOLOGY; CREPANT RESOLUTIONS; MIRROR SYMMETRY; HODGE STRUCTURE; CYCLES; MODEL;
D O I
10.1215/21562261-2021-0010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a sheaf of Fock spaces over the moduli space of elliptic curves E-y with Gamma(1)(3)-level structure, arising from geometric quantization of H-1(E-y), and a global section of this Fock sheaf. The global section coincides, near appropriate limit points, with the Gromov-Witten potentials of local P-2 and of the orbifold [C-3/mu(3)]. This proves that the Gromov-Witten potentials of local P-2 are quasimodular functions for the group Gamma(1)(3), as predicted by Aganagic, Bouchard, and Klemm, and it proves the crepant resolution conjecture for [C-3/mu(3)] in all genera.
引用
收藏
页码:543 / 706
页数:164
相关论文
共 81 条
[51]   Topological String Theory on Compact Calabi-Yau: Modularity and Boundary Conditions [J].
Huang, M. -x. ;
Klemm, A. ;
Quackenbush, S. .
HOMOLOGICAL MIRROR SYMMETRY: NEW DEVELOPMENTS AND PERSPECTIVES, 2009, 757 :45-102
[52]   Holomorphic anomaly in gauge theories and matrix models [J].
Huang, Min-Xin ;
Klemm, Albrecht .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (09)
[53]   QUANTUM COHOMOLOGY AND PERIODS [J].
Iritani, Hiroshi .
ANNALES DE L INSTITUT FOURIER, 2011, 61 (07) :2909-2958
[54]  
Iritani H, 2010, ADV STU P M, V59, P111
[55]   An integral structure in quantum cohomology and mirror symmetry for toric orbifolds [J].
Iritani, Hiroshi .
ADVANCES IN MATHEMATICS, 2009, 222 (03) :1016-1079
[56]  
KANEKO M, 1995, PROG MATH, V129, P165
[57]  
Katzarkov L, 2008, P SYMP PURE MATH, V78, P87
[58]   Quantum cohomology of the Grassmannian and alternate Thom-Sebastiani [J].
Kim, Bumsig ;
Sabbah, Claude .
COMPOSITIO MATHEMATICA, 2008, 144 (01) :221-246
[59]  
Kirillov AA, 2001, ENCYL MATH SCI, V4, P139
[60]  
Klemm A., 2001, AMS/IP Stud. Adv. Math., V23, P183