Gromov-Witten invariants of local P2 andmodular forms

被引:3
作者
Coates, Tom [1 ]
Iritani, Hiroshi [2 ]
机构
[1] Imperial Coll London, Dept Math, London, England
[2] Kyoto Univ, Grad Sch Sci, Dept Math, Kyoto, Japan
基金
英国工程与自然科学研究理事会; 欧洲研究理事会; 日本学术振兴会; 美国国家科学基金会;
关键词
QUANTUM COHOMOLOGY; CREPANT RESOLUTIONS; MIRROR SYMMETRY; HODGE STRUCTURE; CYCLES; MODEL;
D O I
10.1215/21562261-2021-0010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a sheaf of Fock spaces over the moduli space of elliptic curves E-y with Gamma(1)(3)-level structure, arising from geometric quantization of H-1(E-y), and a global section of this Fock sheaf. The global section coincides, near appropriate limit points, with the Gromov-Witten potentials of local P-2 and of the orbifold [C-3/mu(3)]. This proves that the Gromov-Witten potentials of local P-2 are quasimodular functions for the group Gamma(1)(3), as predicted by Aganagic, Bouchard, and Klemm, and it proves the crepant resolution conjecture for [C-3/mu(3)] in all genera.
引用
收藏
页码:543 / 706
页数:164
相关论文
共 81 条
[1]  
Abramovich D, 2008, AM J MATH, V130, P1337
[2]   The topological vertex [J].
Aganagic, M ;
Klemm, A ;
Mariño, M ;
Vafa, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 254 (02) :425-478
[3]   Topological strings and (almost) modular forms [J].
Aganagic, Mina ;
Bouchard, Vincent ;
Klemm, Albrecht .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 277 (03) :771-819
[4]   Special polynomial rings, quasi modular forms and duality of topological strings [J].
Alim, Murad ;
Scheidegger, Emanuel ;
Yau, Shing-Tung ;
Zhou, Jie .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2014, 18 (02) :401-467
[5]  
[Anonymous], 1970, Equations differentielles a points singuliers reguliers
[6]  
[Anonymous], 1996, INT MATH RES NOT IMR, DOI [10.1155/S1073792896000414, DOI 10.1155/S1073792896000414]
[7]  
[Anonymous], 1998, INTEGRABLE SYSTEMS A, P107
[8]  
[Anonymous], 2004, FROBENIUS MANIFOLDS, VE36, P91
[9]   Quantum periods, I: Semi-infinite variations of Hodge structures [J].
Barannikov, S .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2001, 2001 (23) :1243-1264
[10]   VARIATIONS OF THE MIXED HODGE STRUCTURE OF AFFINE HYPERSURFACES IN ALGEBRAIC TORI [J].
BATYREV, VV .
DUKE MATHEMATICAL JOURNAL, 1993, 69 (02) :349-409