Gromov-Witten invariants of local P2 andmodular forms

被引:1
|
作者
Coates, Tom [1 ]
Iritani, Hiroshi [2 ]
机构
[1] Imperial Coll London, Dept Math, London, England
[2] Kyoto Univ, Grad Sch Sci, Dept Math, Kyoto, Japan
基金
欧洲研究理事会; 英国工程与自然科学研究理事会; 美国国家科学基金会; 日本学术振兴会;
关键词
QUANTUM COHOMOLOGY; CREPANT RESOLUTIONS; MIRROR SYMMETRY; HODGE STRUCTURE; CYCLES; MODEL;
D O I
10.1215/21562261-2021-0010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a sheaf of Fock spaces over the moduli space of elliptic curves E-y with Gamma(1)(3)-level structure, arising from geometric quantization of H-1(E-y), and a global section of this Fock sheaf. The global section coincides, near appropriate limit points, with the Gromov-Witten potentials of local P-2 and of the orbifold [C-3/mu(3)]. This proves that the Gromov-Witten potentials of local P-2 are quasimodular functions for the group Gamma(1)(3), as predicted by Aganagic, Bouchard, and Klemm, and it proves the crepant resolution conjecture for [C-3/mu(3)] in all genera.
引用
收藏
页码:543 / 706
页数:164
相关论文
共 50 条
  • [1] Gromov-Witten invariants and localization
    Morrison, David R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (44)
  • [2] GROMOV-WITTEN INVARIANTS OF SymdPr
    Silversmith, Rob
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (09) : 6573 - 6622
  • [3] On Gromov-Witten invariants of P1
    Dubrovin, Boris
    Yang, Di
    MATHEMATICAL RESEARCH LETTERS, 2019, 26 (03) : 729 - 748
  • [4] Gromov-Witten invariants on Grassmannians
    Buch, AS
    Kresch, A
    Tamvakis, H
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (04) : 901 - 915
  • [5] Gromov-Witten invariants and quantum cohomology
    Mukherjee, Amiya
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (04): : 459 - 475
  • [6] Gromov-Witten invariants of the Riemann sphere
    Dubrovin, Boris
    Yang, Di
    Zagier, Don
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2020, 16 (01) : 153 - 190
  • [7] On Mathieu moonshine and Gromov-Witten invariants
    Banlaki, Andreas
    Chowdhury, Abhishek
    Kidambi, Abhiram
    Schimpf, Maria
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (02)
  • [8] Gromov-Witten invariants and quantum cohomology
    Amiya Mukherjee
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2006, 116 : 459 - 475
  • [9] Reconstruction theorems for Gromov-Witten invariants
    Ciolli, Gianni
    BULLETIN DES SCIENCES MATHEMATIQUES, 2010, 134 (01): : 116 - 125
  • [10] ON GROMOV-WITTEN INVARIANTS OF DEL PEZZO SURFACES
    Shoval, Mendy
    Shustin, Eugenii
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (07)