Large-scale silicon quantum photonics implementing arbitrary two-qubit processing

被引:424
作者
Qiang, Xiaogang [1 ,2 ,3 ,4 ,5 ]
Zhou, Xiaoqi [6 ,7 ]
Wang, Jianwei [1 ,2 ,8 ,9 ]
Wilkes, Callum M. [1 ,2 ]
Loke, Thomas [10 ]
O'Gara, Sean [1 ,2 ]
Kling, Laurent [1 ,2 ]
Marshall, Graham D. [1 ,2 ]
Santagati, Raffaele [1 ,2 ]
Ralph, Timothy C. [11 ]
Wang, Jingbo B. [10 ]
O'Brien, Jeremy L. [1 ,2 ]
Thompson, Mark G. [1 ,2 ]
Matthews, Jonathan C. F. [1 ,2 ]
机构
[1] Univ Bristol, HH Wills Phys Lab, Quantum Engn Technol Labs, Bristol, Avon, England
[2] Univ Bristol, Dept Elect & Elect Engn, Bristol, Avon, England
[3] Natl Univ Def Technol, Inst Quantum Informat, Changsha, Hunan, Peoples R China
[4] Natl Univ Def Technol, Coll Comp, State Key Lab High Performance Comp, Changsha, Hunan, Peoples R China
[5] AMS, Natl Innovat Inst Def Technol, Beijing, Peoples R China
[6] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou, Guangdong, Peoples R China
[7] Sun Yat Sen Univ, Sch Phys, Guangzhou, Guangdong, Peoples R China
[8] Peking Univ, State Key Lab Mesoscop Phys, Beijing, Peoples R China
[9] Peking Univ, Sch Phys, Collaborat Innovat Ctr Quantum Matter, Beijing, Peoples R China
[10] Univ Western Australia, Sch Phys, Crawley, WA, Australia
[11] Univ Queensland, Sch Math & Phys, Ctr Quantum Computat & Commun Technol, Brisbane, Qld, Australia
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金; 澳大利亚研究理事会;
关键词
EXPERIMENTAL REALIZATION; ALGORITHM; ENTANGLEMENT; COMPUTATION; CIRCUITS;
D O I
10.1038/s41566-018-0236-y
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Photonics is a promising platform for implementing universal quantum information processing. Its main challenges include precise control of massive circuits of linear optical components and effective implementation of entangling operations on photons. By using large-scale silicon photonic circuits to implement an extension of the linear combination of quantum operators scheme, we realize a fully programmable two-qubit quantum processor, enabling universal two-qubit quantum information processing in optics. The quantum processor is fabricated with mature CMOS-compatible processing and comprises more than 200 photonic components. We programmed the device to implement 98 different two-qubit unitary operations ( with an average quantum process fidelity of 93.2 +/- 4.5%), a two-qubit quantum approximate optimization algorithm, and efficient simulation of Szegedy directed quantum walks. This fosters further use of the linear-combination architecture with silicon photonics for future photonic quantum processors.
引用
收藏
页码:534 / 539
页数:6
相关论文
共 50 条
  • [1] [Anonymous], 2016, QUANTUM SUPREMACY QU
  • [2] [Anonymous], 2014, QUANTUM APPROXIMATE
  • [3] [Anonymous], 2016, 2016 International Conference on Optical MEMS and Nanophotonics (OMN)
  • [4] A two-qubit photonic quantum processor and its application to solving systems of linear equations
    Barz, Stefanie
    Kassal, Ivan
    Ringbauer, Martin
    Lipp, Yannick Ole
    Dakic, Borivoje
    Aspuru-Guzik, Alan
    Walther, Philip
    [J]. SCIENTIFIC REPORTS, 2014, 4
  • [5] Universal linear optics
    Carolan, Jacques
    Harrold, Christopher
    Sparrow, Chris
    Martin-Lopez, Enrique
    Russell, Nicholas J.
    Silverstone, Joshua W.
    Shadbolt, Peter J.
    Matsuda, Nobuyuki
    Oguma, Manabu
    Itoh, Mikitaka
    Marshall, Graham D.
    Thompson, Mark G.
    Matthews, Jonathan C. F.
    Hashimoto, Toshikazu
    O'Brien, Jeremy L.
    Laing, Anthony
    [J]. SCIENCE, 2015, 349 (6249) : 711 - 716
  • [6] Chiang CF, 2010, QUANTUM INF COMPUT, V10, P420
  • [7] Spatial search by quantum walk
    Childs, AM
    Goldstone, J
    [J]. PHYSICAL REVIEW A, 2004, 70 (02): : 022314 - 1
  • [8] QUANTUM ALGORITHM FOR SYSTEMS OF LINEAR EQUATIONS WITH EXPONENTIALLY IMPROVED DEPENDENCE ON PRECISION
    Childs, Andrew M.
    Kothari, Robin
    Somma, Rolando D.
    [J]. SIAM JOURNAL ON COMPUTING, 2017, 46 (06) : 1920 - 1950
  • [9] Universal Computation by Multiparticle Quantum Walk
    Childs, Andrew M.
    Gosset, David
    Webb, Zak
    [J]. SCIENCE, 2013, 339 (6121) : 791 - 794
  • [10] Childs AM, 2012, QUANTUM INF COMPUT, V12, P901