Characterization and reduction of capacitive loss induced by sub-micron Josephson junction fabrication in superconducting qubits

被引:89
作者
Dunsworth, A. [1 ]
Megrant, A. [2 ]
Quintana, C. [1 ]
Chen, Zijun [1 ]
Barends, R. [2 ]
Burkett, B. [2 ]
Foxen, B. [1 ]
Chen, Yu [2 ]
Chiaro, B. [1 ]
Fowler, A. [2 ]
Graff, R. [2 ]
Jeffrey, E. [2 ]
Kelly, J. [2 ]
Lucero, E. [2 ]
Mutus, J. Y. [2 ]
Neeley, M. [2 ]
Neill, C. [1 ]
Roushan, P. [2 ]
Sank, D. [2 ]
Vainsencher, A. [2 ]
Wenner, J. [1 ]
White, T. C. [2 ]
Martinis, John M. [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Google, Santa Barbara, CA 93117 USA
基金
美国国家科学基金会;
关键词
ERROR-DETECTION; QUANTUM;
D O I
10.1063/1.4993577
中图分类号
O59 [应用物理学];
学科分类号
摘要
Josephson junctions form the essential non-linearity for almost all superconducting qubits. The junction is formed when two superconducting electrodes come within similar to 1 nm of each other. Although the capacitance of these electrodes is a small fraction of the total qubit capacitance, the nearby electric fields are more concentrated in dielectric surfaces and can contribute substantially to the total dissipation. We have developed a technique to experimentally investigate the effect of these electrodes on the quality of superconducting devices. We use lambda/4 coplanar waveguide resonators to emulate lumped qubit capacitors. We add a variable number of these electrodes to the capacitive end of these resonators and measure how the additional loss scales with the number of electrodes. We then reduce this loss with fabrication techniques that limit the amount of lossy dielectrics. We then use these techniques for the fabrication of Xmon qubits on a silicon substrate to improve their energy relaxation times by a factor of 5. Published by AIP Publishing.
引用
收藏
页数:4
相关论文
共 20 条
  • [1] Superconducting quantum circuits at the surface code threshold for fault tolerance
    Barends, R.
    Kelly, J.
    Megrant, A.
    Veitia, A.
    Sank, D.
    Jeffrey, E.
    White, T. C.
    Mutus, J.
    Fowler, A. G.
    Campbell, B.
    Chen, Y.
    Chen, Z.
    Chiaro, B.
    Dunsworth, A.
    Neill, C.
    O'Malley, P.
    Roushan, P.
    Vainsencher, A.
    Wenner, J.
    Korotkov, A. N.
    Cleland, A. N.
    Martinis, John M.
    [J]. NATURE, 2014, 508 (7497) : 500 - 503
  • [2] Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits
    Barends, R.
    Kelly, J.
    Megrant, A.
    Sank, D.
    Jeffrey, E.
    Chen, Y.
    Yin, Y.
    Chiaro, B.
    Mutus, J.
    Neill, C.
    O'Malley, P.
    Roushan, P.
    Wenner, J.
    White, T. C.
    Cleland, A. N.
    Martinis, John M.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (08)
  • [3] Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits
    Barends, R.
    Wenner, J.
    Lenander, M.
    Chen, Y.
    Bialczak, R. C.
    Kelly, J.
    Lucero, E.
    O'Malley, P.
    Mariantoni, M.
    Sank, D.
    Wang, H.
    White, T. C.
    Yin, Y.
    Zhao, J.
    Cleland, A. N.
    Martinis, John M.
    Baselmans, J. J. A.
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (11)
  • [4] Qubit Architecture with High Coherence and Fast Tunable Coupling
    Chen, Yu
    Neill, C.
    Roushan, P.
    Leung, N.
    Fang, M.
    Barends, R.
    Kelly, J.
    Campbell, B.
    Chen, Z.
    Chiaro, B.
    Dunsworth, A.
    Jeffrey, E.
    Megrant, A.
    Mutus, J. Y.
    O'Malley, P. J. J.
    Quintana, C. M.
    Sank, D.
    Vainsencher, A.
    Wenner, J.
    White, T. C.
    Geller, Michael R.
    Cleland, A. N.
    Martinis, John M.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (22)
  • [5] Fabrication and characterization of aluminum airbridges for superconducting microwave circuits
    Chen, Zijun
    Megrant, A.
    Kelly, J.
    Barends, R.
    Bochmann, J.
    Chen, Yu
    Chiaro, B.
    Dunsworth, A.
    Jeffrey, E.
    Mutus, J. Y.
    O'Malley, P. J. J.
    Neill, C.
    Roushan, P.
    Sank, D.
    Vainsencher, A.
    Wenner, J.
    White, T. C.
    Cleland, A. N.
    Martinis, John M.
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (05)
  • [6] Dielectric surface loss in superconducting resonators with flux-trapping holes
    Chiaro, B.
    Megrant, A.
    Dunsworth, A.
    Chen, Z.
    Barends, R.
    Campbell, B.
    Chen, Y.
    Fowler, A.
    Hoi, I. C.
    Jeffrey, E.
    Kelly, J.
    Mutus, J.
    Neill, C.
    O'Malley, P. J. J.
    Quintana, C.
    Roushan, P.
    Sank, D.
    Vainsencher, A.
    Wenner, J.
    White, T. C.
    Martinis, John M.
    [J]. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2016, 29 (10)
  • [7] Implementing a strand of a scalable fault-tolerant quantum computing fabric
    Chow, Jerry M.
    Gambetta, Jay M.
    Magesan, Easwar
    Abraham, David W.
    Cross, Andrew W.
    Johnson, B. R.
    Masluk, Nicholas A.
    Ryan, Colm A.
    Smolin, John A.
    Srinivasan, Srikanth J.
    Steffen, M.
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [8] Demonstration of a quantum error detection code using a square lattice of four superconducting qubits
    Corcoles, A. D.
    Magesan, Easwar
    Srinivasan, Srikanth J.
    Cross, Andrew W.
    Steffen, M.
    Gambetta, Jay M.
    Chow, Jerry M.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [9] Bulk and surface loss in superconducting transmon qubits
    Dial, Oliver
    McClure, Douglas T.
    Poletto, Stefano
    Keefe, G. A.
    Rothwell, Mary Beth
    Gambetta, Jay M.
    Abraham, David W.
    Chow, Jerry M.
    Steffen, Matthias
    [J]. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2016, 29 (04)
  • [10] Surface codes: Towards practical large-scale quantum computation
    Fowler, Austin G.
    Mariantoni, Matteo
    Martinis, John M.
    Cleland, Andrew N.
    [J]. PHYSICAL REVIEW A, 2012, 86 (03)