EFFECT OF THE LARGE-SCALE STRUCTURE ON TURBULENT PRANDTL NUMBER IN A TURBULENT SHEAR LAYER

被引:0
作者
Takamure, Kotaro [1 ]
Sakai, Yasuhiko [2 ]
Ito, Yasumasa [2 ]
Iwano, Koji [2 ]
机构
[1] Nagoya Univ, Dept Mech Sci & Engn, Nagoya, Aichi, Japan
[2] Nagoya Univ, Dept Mech Syst Engn, Nagoya, Aichi, Japan
来源
PROCEEDINGE OF THE ASME/JSME/KSME JOINT FLUIDS ENGINEERING CONFERENCE, 2019, VOL 1 | 2019年
关键词
Shear mixing layer; Direct numerical simulation; Turbulent Prandtl number; Large-scale; HEAT-TRANSFER; VELOCITY FLUCTUATIONS; SPECTRAL ANALOGY; TEMPERATURE; DISSIMILARITY; EQUATIONS; MOMENTUM; FLUX; FLOW;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We have run a Direct Numerical Simulation of a spatially developing shear mixing layer. The aim of this study is to clarify the influence of the large-scale structure on the turbulent Prandtl number Pr-T. As a main conclusion, Pr-T takes a small value (Pr-T similar to 0.5) in the dominant region of the large-scale structure. The budget analyses for the Reynolds stress equation and the scalar flux equation revealed that the differences between the momentum and scalar transfer are caused by terms related to pressure (i.e., pressure-strain correlation term, pressure-scalar gradient correlation term, and pressure diffusion terms). Phenomenally, the momentum in the field where a large-scale vortex coexists tends to be transported toward the counter-gradient direction under the influence of pressure, but the scalar is transported toward the gradient direction. As a result, it is thought that the difference in the driving force between the momentum and scalar transport causes the decrease of the Pr-T.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Dynamics of the large-scale circulation in high-Prandtl-number turbulent thermal convection
    Xie, Yi-Chao
    Wei, Ping
    Xia, Ke-Qing
    JOURNAL OF FLUID MECHANICS, 2013, 717 : 322 - 346
  • [2] Pressure gradient effects on the large-scale structure of turbulent boundary layer
    Harun, Zambri
    Monty, Jason P.
    Mathis, Romain
    Marusic, Ivan
    JOURNAL OF FLUID MECHANICS, 2013, 715 : 477 - 498
  • [3] Tracking of large-scale structures in turbulent channel with direct numerical simulation of low Prandtl number passive scalar
    Tiselj, Iztok
    PHYSICS OF FLUIDS, 2014, 26 (12)
  • [4] Turbulent Prandtl number in the boundary layer on a plate: effect of the molecular Prandtl number, injection (suction), and longitudinal pressure gradient
    Lushchik, V. G.
    Makarova, M. S.
    THERMOPHYSICS AND AEROMECHANICS, 2018, 25 (02) : 169 - 182
  • [5] Turbulent Prandtl Number
    钱俭
    Science China Mathematics, 1994, (11) : 1347 - 1353
  • [6] TURBULENT PRANDTL NUMBER
    QIAN, J
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY & TECHNOLOGICAL SCIENCES, 1994, 37 (11): : 1347 - 1353
  • [7] METHOD OF CALCULATION OF TURBULENT PRANDTL NUMBER FOR THE SST TURBULENCE MODEL
    Zaitsev, D. K.
    Smirnov, E. M.
    ST PETERSBURG POLYTECHNIC UNIVERSITY JOURNAL-PHYSICS AND MATHEMATICS, 2019, 12 (01): : 39 - 49
  • [8] On the turbulent Prandtl number in the stable atmospheric boundary layer
    Grachev, Andrey A.
    Andreas, Edgar L.
    Fairall, Christopher W.
    Guest, Peter S.
    Persson, P. Ola G.
    BOUNDARY-LAYER METEOROLOGY, 2007, 125 (02) : 329 - 341
  • [9] On the turbulent Prandtl number in the stable atmospheric boundary layer
    Andrey A. Grachev
    Edgar L Andreas
    Christopher W. Fairall
    Peter S. Guest
    P. Ola G. Persson
    Boundary-Layer Meteorology, 2007, 125 : 329 - 341
  • [10] Effect of the Prandtl number on a stratified turbulent wake
    de Stadler, Matthew B.
    Sarkar, Sutanu
    Brucker, Kyle A.
    PHYSICS OF FLUIDS, 2010, 22 (09)