Learning on a Grassmann Manifold: CSI Quantization for Massive MIMO Systems

被引:4
作者
Bhogi, Keerthana [1 ]
Saha, Chiranjib [1 ]
Dhillon, Harpreet S. [1 ]
机构
[1] Virginia Tech, Dept ECE, Wireless VT, Blacksburg, VA 24061 USA
来源
2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS | 2020年
基金
美国国家科学基金会;
关键词
Massive MIMO; FD-MIMO; FDD; beamforming; codebook; machine learning; Grassmann manifold; K-means clustering; LIMITED FEEDBACK; COMMUNICATION; DIVERSITY; DESIGN;
D O I
10.1109/IEEECONF51394.2020.9443476
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on the design of beamforming codebooks that maximize the average normalized beamforming gain for any underlying channel distribution. While the existing techniques use statistical channel models, we utilize a model-free data-driven approach with foundations in machine learning to generate beamforming codebooks that adapt to the surrounding propagation conditions. The key technical contribution lies in reducing the codebook design problem to an unsupervised clustering problem on a Grassmann manifold where the cluster centroids form the finite-sized beamforming codebook for the channel state information (CSI), which can be efficiently solved using K-means clustering. This approach is extended to develop a remarkably efficient procedure for designing product codebooks for full-dimension (FD) multiple-input multiple-output (MIMO) systems with uniform planar array (UPA) antennas. Simulation results demonstrate the capability of the proposed design criterion in learning the codebooks, reducing the codebook size and producing noticeably higher beamforming gains compared to the existing state-of-the-art CSI quantization techniques.
引用
收藏
页码:179 / 186
页数:8
相关论文
共 25 条
  • [11] A Study of Conversion of Graphical Symbols for Psychological Cognition
    Huang, Yu-Che
    Hsiao, Ko-Jou
    Chen, Yan-Jie
    [J]. PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON DIGITAL MEDICINE AND IMAGE PROCESSING (DMIP 2018), 2018, : 1 - 5
  • [12] Antenna Grouping Based Feedback Compression for FDD-Based Massive MIMO Systems
    Lee, Byungju
    Choi, Junil
    Seol, Ji-Yun
    Love, David J.
    Shim, Byonghyo
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2015, 63 (09) : 3261 - 3274
  • [13] ALGORITHM FOR VECTOR QUANTIZER DESIGN
    LINDE, Y
    BUZO, A
    GRAY, RM
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 1980, 28 (01) : 84 - 95
  • [14] Maximum ratio transmission
    Lo, TKY
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 1999, 47 (10) : 1458 - 1461
  • [15] An Overview of Limited Feedback in Wireless Communication Systems
    Love, David J.
    Heath, Robert W., Jr.
    Lau, Vincent K. N.
    Gesbert, David
    Rao, Bhaskar D.
    Andrews, Matthew
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2008, 26 (08) : 1341 - 1365
  • [16] Grassmannian beamforming for multiple-input multiple-output wireless systems
    Love, DJ
    Heath, RW
    Strohmer, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (10) : 2735 - 2747
  • [17] Limited feedback diversity techniques for correlated channels
    Love, DJ
    Heath, RW
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2006, 55 (02) : 718 - 722
  • [18] Limited feedback unitary precoding for spatial multiplexing systems
    Love, DJ
    Heath, RW
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (08) : 2967 - 2976
  • [19] Flexible Codebook Design for Limited Feedback Systems Via Sequential Smooth Optimization on the Grassmannian Manifold
    Medra, Ahmed
    Davidson, Timothy N.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (05) : 1305 - 1318
  • [20] On beamforming with finite rate feedback in multiple-antenna systems
    Mukkavilli, KK
    Sabharwal, A
    Erkip, E
    Aazhang, B
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (10) : 2562 - 2579