Learning on a Grassmann Manifold: CSI Quantization for Massive MIMO Systems

被引:4
作者
Bhogi, Keerthana [1 ]
Saha, Chiranjib [1 ]
Dhillon, Harpreet S. [1 ]
机构
[1] Virginia Tech, Dept ECE, Wireless VT, Blacksburg, VA 24061 USA
来源
2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS | 2020年
基金
美国国家科学基金会;
关键词
Massive MIMO; FD-MIMO; FDD; beamforming; codebook; machine learning; Grassmann manifold; K-means clustering; LIMITED FEEDBACK; COMMUNICATION; DIVERSITY; DESIGN;
D O I
10.1109/IEEECONF51394.2020.9443476
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on the design of beamforming codebooks that maximize the average normalized beamforming gain for any underlying channel distribution. While the existing techniques use statistical channel models, we utilize a model-free data-driven approach with foundations in machine learning to generate beamforming codebooks that adapt to the surrounding propagation conditions. The key technical contribution lies in reducing the codebook design problem to an unsupervised clustering problem on a Grassmann manifold where the cluster centroids form the finite-sized beamforming codebook for the channel state information (CSI), which can be efficiently solved using K-means clustering. This approach is extended to develop a remarkably efficient procedure for designing product codebooks for full-dimension (FD) multiple-input multiple-output (MIMO) systems with uniform planar array (UPA) antennas. Simulation results demonstrate the capability of the proposed design criterion in learning the codebooks, reducing the codebook size and producing noticeably higher beamforming gains compared to the existing state-of-the-art CSI quantization techniques.
引用
收藏
页码:179 / 186
页数:8
相关论文
共 25 条
  • [1] Clustering and Resource Allocation for Dense Femtocells in a Two-Tier Cellular OFDMA Network
    Abdelnasser, Amr
    Hossain, Ekram
    Kim, Dong In
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2014, 13 (03) : 1628 - 1641
  • [2] Contribution of the Zubair source rocks to the generation and expulsion of oil to the reservoirs of the Mesopotamian Basin, Southern Iraq
    Al-Khafaji, Amer Jassim
    Sadooni, Fadhil
    Hindi, Mohammed Hadi
    [J]. PETROLEUM SCIENCE AND TECHNOLOGY, 2019, 37 (08) : 940 - 949
  • [3] Antenna arrays in mobile communications: Gain, diversity, and channel capacity
    Andersen, JB
    [J]. IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2000, 42 (02) : 12 - 16
  • [4] Boothby W. M., 1986, INTRO DIFFERENTIABLE
  • [5] Advanced Limited Feedback Designs for FD-MIMO Using Uniform Planar Arrays
    Choi, Junil
    Lee, Keonkook
    Love, David J.
    Kim, Taeyoung
    Heath, Robert W., Jr.
    [J]. 2015 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2015,
  • [6] Conway John H., 1996, Experiment. Math., V5, P139, DOI DOI 10.1080/10586458.1996.10504585
  • [7] Dixon P., 2012, ENCY ENV, V3
  • [8] Automatic Recognition of Space-Time Constellations by Learning on the Grassmann Manifold
    Du, Yuqing
    Zhu, Guangxu
    Zhang, Jiayao
    Huang, Kaibin
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (22) : 6031 - 6046
  • [9] Hastie T., 2009, The Elements of Statistical Learning - Data Mining, Inference and Prediction, DOI [DOI 10.1007/978-0-387-84858-7, DOI 10.1007/B94608]
  • [10] Limited Feedback Beamforming Over Temporally-Correlated Channels
    Huang, Kaibin
    Heath, Robert W., Jr.
    Andrews, Jeffrey G.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (05) : 1959 - 1975