The Monge problem for strictly convex norms in Rd

被引:26
作者
Champion, Thierry [1 ]
De Pascale, Luigi [2 ]
机构
[1] Univ Sud Toulon Var, UFR Sci & Tech, Inst Math Toulon & Var, F-83957 La Garde, France
[2] Univ Pisa, Dipartimento Matemat Applicata, I-56127 Pisa, Italy
关键词
Monge-Kantorovich problem; optimal transport problem; cyclical monotonicity; TRANSPORT DENSITY; OPTIMALITY; EXISTENCE;
D O I
10.4171/JEMS/234
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of an optimal transport map for the Monge problem in a convex bounded subset of R-d under the assumptions that the first marginal is absolutely continuous with respect to the Lebesgue measure and that the cost is given by a strictly convex norm. We propose a new approach which does not use disintegration of measures.
引用
收藏
页码:1355 / 1369
页数:15
相关论文
共 29 条
[11]  
Bouchitt G., 2001, J. Eur. Math. Soc, V3, P139, DOI [10.1007/s100970000027, DOI 10.1007/S100970000027]
[12]  
CARARELLI LA, 2002, J AM MATH SOC, V15, P1
[13]  
CARAVENNA L, 2008, MATH ZEIT, V268, P371
[14]   Sharp summability for Monge transport density via interpolation [J].
De Pascale, L ;
Pratelli, A .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2004, 10 (04) :549-552
[15]   Integral estimates for transport densities [J].
De Pascale, L ;
Evans, LC ;
Pratelli, A .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 :383-395
[16]   Regularity properties for Monge transport density and for solutions of some shape optimization problem [J].
De Pascale, L ;
Pratelli, A .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2002, 14 (03) :249-274
[17]  
Evans LC, 1999, MEM AM MATH SOC, V137, P1
[18]   The geometry of optimal transportation [J].
Gangbo, W ;
McCann, RJ .
ACTA MATHEMATICA, 1996, 177 (02) :113-161
[19]  
Kantorovich LV., 1948, C. R. (Dokl.) Acad. Sci. URSS, V3, P225, DOI [10.1007/s10958-006-0050-9, DOI 10.1007/S10958-006-0050-9]
[20]  
Kantorovitch L, 1942, CR ACAD SCI URSS, V37, P199