The Monge problem for strictly convex norms in Rd

被引:26
作者
Champion, Thierry [1 ]
De Pascale, Luigi [2 ]
机构
[1] Univ Sud Toulon Var, UFR Sci & Tech, Inst Math Toulon & Var, F-83957 La Garde, France
[2] Univ Pisa, Dipartimento Matemat Applicata, I-56127 Pisa, Italy
关键词
Monge-Kantorovich problem; optimal transport problem; cyclical monotonicity; TRANSPORT DENSITY; OPTIMALITY; EXISTENCE;
D O I
10.4171/JEMS/234
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of an optimal transport map for the Monge problem in a convex bounded subset of R-d under the assumptions that the first marginal is absolutely continuous with respect to the Lebesgue measure and that the cost is given by a strictly convex norm. We propose a new approach which does not use disintegration of measures.
引用
收藏
页码:1355 / 1369
页数:15
相关论文
共 29 条
[1]  
Ambrosio L, 2003, LECT NOTES MATH, V1813, P123
[2]   Existence of optimal transport maps for crystalline norms [J].
Ambrosio, L ;
Kirchheim, B ;
Pratelli, A .
DUKE MATHEMATICAL JOURNAL, 2004, 125 (02) :207-241
[3]  
Ambrosio L, 2003, LECT NOTES MATH, V1812, P1
[4]  
[Anonymous], 1998, PROB APPL S, DOI 10.1007/b98894
[5]   ASYMPTOTIC DEVELOPMENT BY GAMMA-CONVERGENCE [J].
ANZELLOTTI, G ;
BALDO, S .
APPLIED MATHEMATICS AND OPTIMIZATION, 1993, 27 (02) :105-123
[6]   Viscosity solutions of minimization problems [J].
Attouch, H .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (03) :769-806
[7]  
Benamou JD, 2000, NUMER MATH, V84, P375, DOI 10.1007/s002119900117
[8]  
BIANCHINI S, 2008, EULER LAGRANGE EQUAT
[9]  
Bianchini S, 2007, DISCRETE CONT DYN-A, V17, P449
[10]  
Bianchini S, 2009, BULL INST MATH ACAD, V4, P353