Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors

被引:826
作者
Zhang, Li Li [1 ,2 ]
Zhao, Xin [1 ,2 ,3 ]
Stoller, Meryl D. [1 ,2 ]
Zhu, Yanwu [1 ,2 ,4 ]
Ji, Hengxing [1 ,2 ]
Murali, Shanthi [1 ,2 ]
Wu, Yaping [1 ,2 ]
Perales, Stephen [1 ,2 ]
Clevenger, Brandon [1 ,2 ]
Ruoff, Rodney S. [1 ,2 ]
机构
[1] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[3] Donghua Univ, State Key Lab Modificat Chem Fibers & Polymer Mat, Coll Mat Sci & Engn, Shanghai 201620, Peoples R China
[4] Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei 230036, Peoples R China
关键词
Graphene; flexible film; chemical activation; supercapacitors; DOUBLE-LAYER CAPACITOR; CARBON-FILMS; COMPOSITE; ELECTRODES; DEPOSITION; PLATELETS; SHEETS; PAPER;
D O I
10.1021/nl203903z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a novel method to prepare highly conductive, free-standing, and flexible porous carbon thin films by chemical activation of reduced graphene oxide paper. These flexible carbon thin films possess a very high specific surface area of 2400 m(2) g(-1) with a high in-plane electrical conductivity of 5880 S m(-1). This is the highest specific surface area for a free-standing carbon film reported to date. A two-electrode supercapacitor using these carbon films as electrodes demonstrated an excellent high-frequency response, an extremely low equivalent series resistance on the order of 0.1 ohm, and a high-power delivery of about 500 kW kg(-1). While higher frequency and power values for graphene materials have been reported, these are the highest values achieved while simultaneously maintaining excellent specific capacitances and energy densities of 120 F g(-1) and 26 W h kg(-1), respectively. In addition, these free-standing thin films provide a route to simplify the electrode-manufacturing process by eliminating conducting additives and binders. The synthetic process is also compatible with existing industrial level KOH activation processes and roll-to-roll thin-film fabrication technologies.
引用
收藏
页码:1806 / 1812
页数:7
相关论文
共 31 条
[1]   Thin Film Fabrication and Simultaneous Anodic Reduction of Deposited Graphene Oxide Platelets by Electrophoretic Deposition [J].
An, Sung Jin ;
Zhu, Yanwu ;
Lee, Sun Hwa ;
Stoller, Meryl D. ;
Emilsson, Tryggvi ;
Park, Sungjin ;
Velamakanni, Aruna ;
An, Jinho ;
Ruoff, Rodney S. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (08) :1259-1263
[2]   Carbon-based electronics [J].
Avouris, Phaedon ;
Chen, Zhihong ;
Perebeinos, Vasili .
NATURE NANOTECHNOLOGY, 2007, 2 (10) :605-615
[3]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[4]   Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors [J].
Chmiola, John ;
Largeot, Celine ;
Taberna, Pierre-Louis ;
Simon, Patrice ;
Gogotsi, Yury .
SCIENCE, 2010, 328 (5977) :480-483
[5]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460
[6]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[7]   Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation [J].
Fan, Xiaobin ;
Peng, Wenchao ;
Li, Yang ;
Li, Xianyu ;
Wang, Shulan ;
Zhang, Guoliang ;
Zhang, Fengbao .
ADVANCED MATERIALS, 2008, 20 (23) :4490-4493
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]   Gas adsorption characterization of ordered organic-inorganic nanocomposite materials [J].
Kruk, M ;
Jaroniec, M .
CHEMISTRY OF MATERIALS, 2001, 13 (10) :3169-3183
[10]   Relation between the ion size and pore size for an electric double-layer capacitor [J].
Largeot, Celine ;
Portet, Cristelle ;
Chmiola, John ;
Taberna, Pierre-Louis ;
Gogotsi, Yury ;
Simon, Patrice .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (09) :2730-+