General Strategy for Doping Impurities (Ge, Si, Mn, Sn, Ti) in Hematite Nanocrystals

被引:80
作者
Liu, Jun [1 ,2 ]
Liang, Changhao [1 ,2 ]
Zhang, Hemin [1 ,2 ]
Tian, Zhenfei [1 ,2 ]
Zhang, Shuyuan [3 ]
机构
[1] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China
[2] Chinese Acad Sci, Inst Solid State Phys, Anhui Key Lab Nanomat & Nanotechnol, Hefei 230031, Peoples R China
[3] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
DOPED HEMATITE; QUANTUM DOTS; IRON-OXIDE; THIN-FILMS; ALPHA-FE2O3; PHOTOANODES; OPTICAL-PROPERTIES; WATER OXIDATION; LASER-ABLATION; SILICON; PERFORMANCE;
D O I
10.1021/jp2105874
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The doping of foreign atoms is critical in tailoring the properties and potential applications of semiconductor nanocrystals. A general strategy for successfully incorporating various impurities (e.g., Ge, Si, Mn, Sn, Ti) inside the regular crystal lattice of hematite (alpha-Fe2O3), a promising candidate for water splitting and environmental protection, is developed. Liquid-phase laser ablation-derived colloidal clusters are used as doping precursors for the metastable growth of doped hematite nanocrystals, thereby avoiding surfactants and hazardous liquid byproducts. The doping percentage, morphology, and structure of the hematite nanocrystals are greatly affected by the type and amount of the colloidal precursors used. High-resolution transmission electron microscopy and the corresponding component analysis reveal that the dopant atoms either form superlattice structures (Ge and Si) or distribute as disordered solid solutions (Mn, Sn, Ti) inside the crystal lattice of hematite. The optical absorption spectra and the resulting band gaps of the doped-hematite nanocrystals are investigated. Typical electronic transitions consisting of ligand to metal charge transitions, Fe3+ d-d transitions, and pair excitations distinctly occur in the optical spectra. The simultaneous incorporation of impurities and preferential growth mechanism of hematite nanocrystals are also further elaborated.
引用
收藏
页码:4986 / 4992
页数:7
相关论文
共 52 条
[1]   Process Map for the Hydrothermal Synthesis of α-Fe2O3 Nanorods [J].
Almeida, Trevor P. ;
Fay, Mike ;
Zhu, Yanqiu ;
Brown, Paul D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (43) :18689-18698
[2]   OPTICAL-PROPERTIES OF MANGANESE-DOPED NANOCRYSTALS OF ZNS [J].
BHARGAVA, RN ;
GALLAGHER, D ;
HONG, X ;
NURMIKKO, A .
PHYSICAL REVIEW LETTERS, 1994, 72 (03) :416-419
[3]   Impurities Enhance Semiconductor Nanocrystal Performance [J].
Cao, Y. Charles .
SCIENCE, 2011, 332 (6025) :48-49
[4]   Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight:: Nanostructure-directing effect of Si-doping [J].
Cesar, I ;
Kay, A ;
Martinez, JAG ;
Grätzel, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (14) :4582-4583
[5]   Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting [J].
Cesar, Ilkay ;
Sivula, Kevin ;
Kay, Andreas ;
Zboril, Radek ;
Graetzel, Michael .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (02) :772-782
[6]   Quantum size effect on surface photovoltage spectra:: Alpha-Fe2O3 nanocrystals on the surface of monodispersed silica microsphere [J].
Cheng, K ;
He, YP ;
Miao, YM ;
Zou, BS ;
Wang, YG ;
Wang, TH ;
Zhang, XT ;
Du, ZL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (14) :7259-7264
[7]   Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis [J].
Duret, A ;
Grätzel, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (36) :17184-17191
[8]   Doping semiconductor nanocrystals [J].
Erwin, SC ;
Zu, LJ ;
Haftel, MI ;
Efros, AL ;
Kennedy, TA ;
Norris, DJ .
NATURE, 2005, 436 (7047) :91-94
[9]   Solid-state physics - Doping the undopable [J].
Galli, G .
NATURE, 2005, 436 (7047) :32-33
[10]   Band-gap measurements of bulk and nanoscale hematite by soft x-ray spectroscopy [J].
Gilbert, B. ;
Frandsen, C. ;
Maxey, E. R. ;
Sherman, D. M. .
PHYSICAL REVIEW B, 2009, 79 (03)