ON p-GROUPS WITH AUTOMORPHISM GROUPS RELATED TO THE CHEVALLEY GROUP G2(p)
被引:1
|
作者:
Bamberg, John
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Australia, Ctr Math Symmetry & Computat, 35 Stirling Highway, Crawley, WA 6009, AustraliaUniv Western Australia, Ctr Math Symmetry & Computat, 35 Stirling Highway, Crawley, WA 6009, Australia
Bamberg, John
[1
]
Freedman, Sauld D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Australia, Ctr Math Symmetry & Computat, 35 Stirling Highway, Crawley, WA 6009, Australia
Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, ScotlandUniv Western Australia, Ctr Math Symmetry & Computat, 35 Stirling Highway, Crawley, WA 6009, Australia
Freedman, Sauld D.
[1
,2
]
Morgan, Luke
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Australia, Ctr Math Symmetry & Computat, 35 Stirling Highway, Crawley, WA 6009, Australia
Univ Primorska, UP FAMNIT, Glagoljaska 8, Koper 6000, Slovenia
Univ Primorska, UP IAM, Muzejski Trg 2, Koper 6000, SloveniaUniv Western Australia, Ctr Math Symmetry & Computat, 35 Stirling Highway, Crawley, WA 6009, Australia
Morgan, Luke
[1
,3
,4
]
机构:
[1] Univ Western Australia, Ctr Math Symmetry & Computat, 35 Stirling Highway, Crawley, WA 6009, Australia
[2] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland
[3] Univ Primorska, UP FAMNIT, Glagoljaska 8, Koper 6000, Slovenia
[4] Univ Primorska, UP IAM, Muzejski Trg 2, Koper 6000, Slovenia
Let p be an odd prime. We construct a p-group P of nilpotency class two, rank seven and exponent p, such that Aut(P) induces N-GL(7;p)(G2(p)) = Z(GL(7; p))G2(p) on the Frattini quotient P=Phi(P). The constructed group P is the smallest p-group with these properties, having order p(14), and when p = 3 our construction gives two nonisomorphic p-groups. To show that P satisfies the specified properties, we study the action of G(2)(q) on the octonion algebra over F-q, for each power q of p, and explore the reducibility of the exterior square of each irreducible seven-dimensional F-q[G2(q)]-module.
机构:
Nanjing Normal Univ, Inst Math, Nanjing 210046, Peoples R ChinaNanjing Normal Univ, Inst Math, Nanjing 210046, Peoples R China
Zhang, Heng
He, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Inst Math, Nanjing 210046, Peoples R ChinaNanjing Normal Univ, Inst Math, Nanjing 210046, Peoples R China
He, Wei
Peng, Dekui
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Math, Beijing 100190, Peoples R ChinaNanjing Normal Univ, Inst Math, Nanjing 210046, Peoples R China
Peng, Dekui
Tkachenko, Mikhail
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Metropolitana, Av San Rafael Atlixco 186, Mexico City 09340, DF, MexicoNanjing Normal Univ, Inst Math, Nanjing 210046, Peoples R China