Neural variability fingerprint predicts individuals' information security violation intentions

被引:7
作者
Duan, Qin [1 ]
Xu, Zhengchuan [2 ]
Hu, Qing [3 ]
Luo, Siyang [1 ]
机构
[1] Sun Yat Sen Univ, Dept Psychol, Guangdong Prov Key Lab Social Cognit Neurosci & M, Guangdong Prov Key Lab Brain Funct & Dis, Guangzhou 510006, Peoples R China
[2] Fudan Univ, Shanghai 200433, Peoples R China
[3] CUNY, Koppelman Sch Business, Brooklyn Coll, New York, NY 10021 USA
来源
FUNDAMENTAL RESEARCH | 2022年 / 2卷 / 02期
基金
中国国家自然科学基金;
关键词
Information security; Information security violation; Neural variability; fMRI; Machine learning; DYNAMIC FUNCTIONAL CONNECTIVITY; SELF-CONTROL; COGNITIVE NEUROSCIENCE; BRAIN; CORTEX; PREMOTOR; INSIGHTS; BELIEFS; REWARD; AREAS;
D O I
10.1016/j.fmre.2021.10.002
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As the weakest links in information security defense are the individuals in an organizations, it is important to understand their information security behaviors. In the current study, we tested whether the neural variability pattern could predict an individual???s intention to engage in information security violations. Because cognitive neuroscience methods can provide a new perspective into psychological processes without common methodolog-ical biases or social desirability, we combined an adapted version of the information security paradigm (ISP) with functional magnetic resonance imaging (fMRI) technology. While completing an adapted ISP task, participants underwent an fMRI scan. We adopted a machine learning method to build a neural variability predictive model. Consistent with previous studies, we found that people were more likely to take actions under neutral condi-tions than in minor violation contexts and major violation contexts. Moreover, the neural variability predictive model, including nodes within the task control, default mode, visual, salience and attention networks, can pre-dict information security violation intentions. These results illustrate the predictive value of neural variability for information security violations and provide a new perspective for combining ISP with the fMRI technique to explore a neural predictive model of information security violation intention.
引用
收藏
页码:303 / 310
页数:8
相关论文
共 52 条
[1]   Tracking Whole-Brain Connectivity Dynamics in the Resting State [J].
Allen, Elena A. ;
Damaraju, Eswar ;
Plis, Sergey M. ;
Erhardt, Erik B. ;
Eichele, Tom ;
Calhoun, Vince D. .
CEREBRAL CORTEX, 2014, 24 (03) :663-676
[2]  
Baker W., VERIZON 2010 DATA BR
[3]  
Brown J. D., 2014, Psychological Perspectives on the Self, P39
[4]  
Bulgurcu B, 2010, MIS QUART, V34, P523
[5]   Efficient leave-one-out cross-validation of kernel Fisher discriminant classifiers [J].
Cawley, GC ;
Talbot, NLC .
PATTERN RECOGNITION, 2003, 36 (11) :2585-2592
[6]   Time-frequency dynamics of resting-state brain connectivity measured with fMRI [J].
Chang, Catie ;
Glover, Gary H. .
NEUROIMAGE, 2010, 50 (01) :81-98
[7]   Comparing test-retest reliability of dynamic functional connectivity methods [J].
Choe, Ann S. ;
Nebel, Mary Beth ;
Barber, Anita D. ;
Cohen, Jessica R. ;
Xu, Yuting ;
Pekar, James J. ;
Caffo, Brian ;
Lindquist, Martin A. .
NEUROIMAGE, 2017, 158 :155-175
[8]   Computational approaches to fMRI analysis [J].
Cohen, Jonathan D. ;
Daw, Nathaniel ;
Engelhardt, Barbara ;
Hasson, Uri ;
Li, Kai ;
Niv, Yael ;
Norman, Kenneth A. ;
Pillow, Jonathan ;
Ramadge, Peter J. ;
Turk-Browne, Nicholas B. ;
Willke, Theodore L. .
NATURE NEUROSCIENCE, 2017, 20 (03) :304-313
[9]   A whole brain fMRI atlas generated via spatially constrained spectral clustering [J].
Craddock, R. Cameron ;
James, G. Andrew ;
Holtzheimer, Paul E., III ;
Hu, Xiaoping P. ;
Mayberg, Helen S. .
HUMAN BRAIN MAPPING, 2012, 33 (08) :1914-1928
[10]   Neuroplasticity Subserving Motor Skill Learning [J].
Dayan, Eran ;
Cohen, Leonardo G. .
NEURON, 2011, 72 (03) :443-454