Design and Modeling of a New Variable Stiffness Robot Joint

被引:0
|
作者
Tao, Yong [1 ]
Wang, Tianmiao [1 ]
Wang, Yunqing [1 ]
Guo, Long [2 ]
Xiong, Hegen [2 ]
Chen, Fang [2 ]
机构
[1] Beihang Univ, Sch Mech Engn & Automat, Beijing 100191, Peoples R China
[2] Wuhan Univ Sci & Technol, Sch Machinery & Automat, Wuhan 430081, Peoples R China
来源
PROCESSING OF 2014 INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INFORMATION INTEGRATION FOR INTELLIGENT SYSTEMS (MFI) | 2014年
关键词
variable stiffness; robot joint; operating safely; regulation response; ACTUATOR;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Safety constraints are a major aspect for human robots interaction. A new variable stiffness robot joint (VSR-joint) is proposed for operating safely. The proposed concept allows for the development of an actuation unit with a wide range of stiffness and a fast stiffness regulation response. The design of VSR-joint is compact and integrated highly and the operating is simply. The mechanics, the principle of operation and the model of the VSR-joint are proposed. The principle of operation of VSR-joint is based on a lever arm mechanism with a continuously regulated pivot point. The VSR-Joint features a highly dynamic stiffness adjustment along with a mechanically programmable system behavior. This allows an easy adaption to a big variety of tasks. Preliminary results are presented to demonstrate the fast stiffness regulation response and the wide range of stiffness achieved by the proposed VSR-Joint design.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Mechanical design of a variable stiffness continuous bionic spine for a quadruped robot
    Qian W.
    Wang Z.
    Su B.
    Dang R.
    Liao J.
    Liu S.
    Guo Z.
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2023, 54 (08): : 3112 - 3121
  • [32] Design, modeling and testing of a compact variable stiffness mechanism for exoskeletons
    Li, Zhongyi
    Bai, Shaoping
    Madsen, Ole
    Chen, Weihai
    Zhang, Jianbin
    MECHANISM AND MACHINE THEORY, 2020, 151
  • [33] Design and Research of a Variable Stiffness Compliant Joint Based on Torsional Spring
    Qu X.
    Cao D.
    Zhang S.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (13): : 114 - 123
  • [34] Design and Modeling of Elastic Variable Stiffness Robotic Fish Tail
    Zhu, Chunhui
    Deng, Liangwei
    Wang, Xiaofei
    Yin, Zhaoran
    Zhou, Chao
    PROCEEDINGS OF 2022 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2022), 2022, : 1251 - 1256
  • [35] Design, Modeling, and Manufacturing of a Variable Lateral Stiffness Arm Via Shape Morphing Mechanisms
    She, Yu
    Gu, Zhaoyuan
    Song, Siyang
    Su, Hai-Jun
    Wang, Junmin
    JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2021, 13 (03):
  • [36] Low-cost variable stiffness joint design using translational variable radius pulleys
    Yigit, Cihat Bora
    Bayraktar, Ertugrul
    Boyraz, Pinar
    MECHANISM AND MACHINE THEORY, 2018, 130 : 203 - 219
  • [37] Design and Feasibility Study of MRG-Based Variable Stiffness Soft Robot
    Huang, Luojing
    Hu, Hongsheng
    Ouyang, Qing
    MICROMACHINES, 2022, 13 (11)
  • [38] Design and analysis of a novel hybrid-driven continuum robot with variable stiffness
    Harsono, Edward
    Yang, Jun
    Bhattacharya, Shounak
    Yu, Haoyong
    MECHANISM AND MACHINE THEORY, 2022, 177
  • [39] Stiffness modeling of a variable stiffness compliant link
    Morrison, Tyler
    Su, Hai-Jun
    MECHANISM AND MACHINE THEORY, 2020, 153
  • [40] Design and Stiffness Control of a Variable-Length Continuum Robot for Endoscopic Surgery
    Zhang, Jingyu
    Fang, Qin
    Liu, Lilu
    Jin, Rui
    Xiang, Pingyu
    Xiong, Rong
    Wang, Yue
    Lu, Haojian
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, : 5251 - 5261