Topological Antiferromagnetic Van der Waals Phase in Topological Insulator/Ferromagnet Heterostructures Synthesized by a CMOS-Compatible Sputtering Technique

被引:12
|
作者
Bhattacharjee, Nirjhar [1 ]
Mahalingam, Krishnamurthy [2 ]
Fedorko, Adrian [3 ]
Lauter, Valeria [4 ]
Matzelle, Matthew [3 ]
Singh, Bahadur [5 ]
Grutter, Alexander [6 ]
Will-Cole, Alexandria [1 ]
Page, Michael [2 ]
McConney, Michael [2 ]
Markiewicz, Robert [3 ]
Bansil, Arun [3 ]
Heiman, Don [3 ,7 ]
Sun, Nian Xiang [1 ]
机构
[1] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[2] Air Force Res Lab, Nanoelect Mat Branch, Boston, OH 05433 USA
[3] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[4] Oak Ridge Natl Lab, Neutron Sci Directorate, Quantum Condensed Matter Div, Boston, TN 37831 USA
[5] Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Mumbai 400005, Maharashtra, India
[6] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA
[7] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
ferromagnets; interface; magnetic topological insulators; topological insulators; van der Waals materials; EXCHANGE BIAS; INSULATOR; INTERFACE; REALIZATION; STATE;
D O I
10.1002/adma.202108790
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Breaking time-reversal symmetry by introducing magnetic order, thereby opening a gap in the topological surface state bands, is essential for realizing useful topological properties such as the quantum anomalous Hall and axion insulator states. In this work, a novel topological antiferromagnetic (AFM) phase is created at the interface of a sputtered, c-axis-oriented, topological insulator/ferromagnet heterostructure-Bi2Te3/Ni80Fe20 because of diffusion of Ni in Bi2Te3 (Ni-Bi2Te3). The AFM property of the Ni-Bi2Te3 interfacial layer is established by observation of spontaneous exchange bias in the magnetic hysteresis loop and compensated moments in the depth profile of the magnetization using polarized neutron reflectometry. Analysis of the structural and chemical properties of the Ni-Bi2Te3 layer is carried out using selected-area electron diffraction, electron energy loss spectroscopy, and X-ray photoelectron spectroscopy. These studies, in parallel with first-principles calculations, indicate a solid-state chemical reaction that leads to the formation of Ni-Te bonds and the presence of topological antiferromagnetic (AFM) compound NiBi2Te4 in the Ni-Bi2Te3 interface layer. The Neel temperature of the Ni-Bi2Te3 layer is approximate to 63 K, which is higher than that of typical magnetic topological insulators (MTIs). The presented results provide a pathway toward industrial complementary metal-oxide-semiconductor (CMOS)-process-compatible sputtered-MTI heterostructures, leading to novel materials for topological quantum devices.
引用
收藏
页数:10
相关论文
共 11 条
  • [1] Topological Spin Textures in an Insulating van der Waals Ferromagnet
    Grebenchuk, Sergey
    Mckeever, Conor
    Grzeszczyk, Magdalena
    Chen, Zhaolong
    Siskins, Makars
    McCray, Arthur R. C.
    Li, Yue
    Petford-Long, Amanda K.
    Phatak, Charudatta M.
    Ruihuan, Duan
    Zheng, Liu
    Novoselov, Kostya S.
    Santos, Elton J. G.
    Koperski, Maciej
    ADVANCED MATERIALS, 2024, 36 (24)
  • [2] Band Engineering of Dirac Surface States in Topological-Insulator-Based van der Waals Heterostructures
    Chang, Cui-Zu
    Tang, Peizhe
    Feng, Xiao
    Li, Kang
    Ma, Xu-Cun
    Duan, Wenhui
    He, Ke
    Xue, Qi-Kun
    PHYSICAL REVIEW LETTERS, 2015, 115 (13)
  • [3] Topological Insulator-Based van der Waals Heterostructures for Effective Control of Massless and Massive Dirac Fermions
    Chong, Su Kong
    Han, Kyu Bum
    Nagaoka, Akira
    Tsuchikawa, Ryuichi
    Liu, Renlong
    Liu, Haoliang
    Vardeny, Zeev Valy
    Pesin, Dmytro A.
    Lee, Changgu
    Sparks, Taylor D.
    Deshpande, Vikram V.
    NANO LETTERS, 2018, 18 (12) : 8047 - 8053
  • [4] Giant Topological Hall Effect in van der Waals Heterostructures of CrTe2/Bi2Te3
    Zhang, Xiaoqian
    Ambhire, Siddhesh C.
    Lu, Qiangsheng
    Niu, Wei
    Cook, Jacob
    Jiang, Jidong Samuel
    Hong, Deshun
    Alahmed, Laith
    He, Liang
    Zhang, Rong
    Xu, Yongbing
    Zhang, Steven S-L
    Li, Peng
    Bian, Guang
    ACS NANO, 2021, 15 (10) : 15710 - 15719
  • [5] Gate-tunable transport in van der Waals topological insulator Bi4Br4 nanobelts
    Wu, Si-Li
    Ren, Zhi-Hui
    Zhang, Yu-Qi
    Li, Yong-Kai
    Han, Jun-Feng
    Duan, Jun-Xi
    Wang, Zhi-Wei
    Li, Cai-Zhen
    Yao, Yu-Gui
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2023, 35 (23)
  • [6] van der Waals Stacking-Induced Topological Phase Transition in Layered Ternary Transition Metal Chalcogenides
    Liu, Junwei
    Wang, Hua
    Fang, Chen
    Fu, Liang
    Qian, Xiaofeng
    NANO LETTERS, 2017, 17 (01) : 467 - 475
  • [7] Gate-Tunable Anomalous Hall Effect in a 3D Topological Insulator/ 2D Magnet van der Waals Heterostructure
    Gupta, Vishakha
    Jain, Rakshit
    Ren, Yafei
    Zhang, Xiyue S.
    Alnaser, Husain F.
    Vashist, Amit
    Deshpande, Vikram V.
    Muller, David A.
    Xiao, Di
    Sparks, Taylor D.
    Ralph, Daniel C.
    NANO LETTERS, 2022, 22 (17) : 7166 - 7172
  • [8] van der Waals Epitaxial Growth of Atomically Thin Bi2Se3 and Thickness-Dependent Topological Phase Transition
    Xu, Shuigang
    Han, Yu
    Chen, Xiaolong
    Wu, Zefei
    Wang, Lin
    Han, Tian-Yi
    Ye, Weiguang
    Lu, Huanhuan
    Long, Gen
    Wu, Yingying
    Lin, Jiangxiazi
    Cai, Yuan
    Ho, K. M.
    He, Yuheng
    Wang, Ning
    NANO LETTERS, 2015, 15 (04) : 2645 - 2651
  • [9] Manipulation and Optical Detection of Artificial Topological Phenomena in 2D Van der Waals Fe5GeTe2/MnPS3 Heterostructures
    Chen, Xiaodie
    Wang, Haoyun
    Li, Manshi
    Hao, Qinghua
    Cai, Menghao
    Dai, Hongwei
    Chen, Hongjing
    Xing, Yuntong
    Liu, Jie
    Wang, Xia
    Zhai, Tianyou
    Zhou, Xing
    Han, Jun-Bo
    ADVANCED SCIENCE, 2023, 10 (22)
  • [10] First-principles study on the electronic structures and topological properties of Bi(110)/IV-VI and Bi(110)/V-V van der Waals heterostructures
    Zhang, Yuhua
    Luo, Yanwei
    Zhao, Chunxiang
    Chen, Weiguang
    Liu, Liangliang
    Zhang, Liying
    Jia, Yu
    Hou, Zhiwei
    APPLIED SURFACE SCIENCE, 2023, 614