Extensional Semantics for Higher-Order Logic Programs with Negation

被引:3
作者
Rondogiannis, Panos [1 ]
Symeonidou, Ioanna [1 ]
机构
[1] Univ Athens, Dept Informat & Telecommun, Athens, Greece
来源
LOGICS IN ARTIFICIAL INTELLIGENCE, (JELIA 2016) | 2016年 / 10021卷
关键词
D O I
10.1007/978-3-319-48758-8_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop an extensional semantics for higher-order logic programs with negation, generalizing the technique that was introduced in [2,3] for positive higher-order programs. In this way we provide an alternative extensional semantics for higher-order logic programs with negation to the one proposed in [6]. As an immediate useful consequence of our developments, we define for the language we consider the notions of stratification and local stratification, which generalize the familiar such notions from classical logic programming. We demonstrate that for stratified and locally stratified higher-order logic programs, the proposed semantics never assigns the unknown truth value.
引用
收藏
页码:447 / 462
页数:16
相关论文
共 17 条
[1]  
Apt K.R., 1988, THEORY DECLARATIVE K, P89
[2]  
Bezem M., 2001, Computer Science Logic. 15th International Workshop, CSL 2001 10th Annual Conference of the EACSL. Proceedings (Lecture Notes in Computer Science Vol.2142), P203
[3]  
Bezem M, 1999, LOGIC PROGRAMM, P395
[4]  
Bloom S.L., 1993, EATCS MONOGRAPHS THE, DOI DOI 10.1007/978-3-642-78034-9
[5]  
Carayol A, 2016, FIFTEENTH INTERNATIONAL CONFERENCE ON THE PRINCIPLES OF KNOWLEDGE REPRESENTATION AND REASONING, P533
[6]   Equivalence of two Fixed-Point Semantics for Definitional Higher-Order Logic Programs [J].
Charalambidis, Angelos ;
Rondogiannis, Panos ;
Symeonidou, Ioanna .
ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2015, (191) :18-32
[7]   Minimum Model Semantics for Extensional Higher-order Logic Programming with Negation [J].
Charalambidis, Angelos ;
Esik, Zoltan ;
Rondogiannis, Panos .
THEORY AND PRACTICE OF LOGIC PROGRAMMING, 2014, 14 :725-737
[8]   Extensional Higher-Order Logic Programming [J].
Charalambidis, Angelos ;
Handjopoulos, Konstantinos ;
Rondogiannis, Panagiotis ;
Wadge, William W. .
ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2013, 14 (03)
[9]   HILOG - A FOUNDATION FOR HIGHER-ORDER LOGIC PROGRAMMING [J].
CHEN, WD ;
KIFER, M ;
WARREN, DS .
JOURNAL OF LOGIC PROGRAMMING, 1993, 15 (03) :187-230
[10]  
Cholak P., 1994, Fundamenta Informaticae, V21, P333