Bayesian nonparametric multivariate ordinal regression

被引:12
|
作者
Bao, Junshu [1 ]
Hanson, Timothy E. [1 ]
机构
[1] Univ S Carolina, Dept Stat, Columbia, SC 29208 USA
关键词
Finite mixture of probits; linear dependent Dirichlet process; multivariate linear model; DIRICHLET; MODELS; BIVARIATE;
D O I
10.1002/cjs.11253
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multivariate ordinal data are modelled as a finite stick-breaking mixture of multivariate probit models. Parametric multivariate probit models are first developed for ordinal data, then generalized to finite mixtures of multivariate probit models. Specific recommendations for prior settings are found to work well in simulations and data analyses. Interpretation of the model is carried out by examining aspects of the mixture components as well as through averaged effects focusing on the mean responses. A simulation verifies that the fitting technique works, and an analysis of alcohol drinking behaviour data illustrates the usefulness of the proposed model. (C) 2015 Statistical Society of Canada
引用
收藏
页码:337 / 357
页数:21
相关论文
共 50 条
  • [21] Comparing methods for multivariate nonparametric regression
    Banks, DL
    Olszewski, RT
    Maxion, RA
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2003, 32 (02) : 541 - 571
  • [22] IDENTITY REPRODUCING MULTIVARIATE NONPARAMETRIC REGRESSION
    MULLER, HG
    SONG, KS
    JOURNAL OF MULTIVARIATE ANALYSIS, 1993, 46 (02) : 237 - 253
  • [23] Multivariate ordinal regression for multiple repeated measurements
    Vana-Guer, Laura
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 199
  • [24] A Bayesian approach to nonparametric bivariate regression
    Smith, M
    Kohn, R
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) : 1522 - 1535
  • [25] Bayesian wavelet networks for nonparametric regression
    Holmes, CC
    Mallick, BK
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (01): : 27 - 35
  • [26] Bayesian neural network for nonparametric regression
    Yang, Bin
    Nie, Zaiping
    Xia, Yaoxian
    Jiang, Rongsheng
    2002, Univ. of Electronic Science and Technology of China (31):
  • [27] A Bayesian Nonparametric Approach to Multilevel Regression
    Vu Nguyen
    Dinh Phung
    Venkatesh, Svetha
    Bui, Hung H.
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PART I, 2015, 9077 : 330 - 342
  • [28] A nonparametric dependent process for Bayesian regression
    Fuentes-Garcia, Ruth
    Mena, Ramses H.
    Walker, Stephen G.
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (08) : 1112 - 1119
  • [29] Bayesian Nonparametric ROC Regression Modeling
    Inacio de Carvalho, Vanda
    Jara, Alejandro
    Hanson, Timothy E.
    de Carvalho, Miguel
    BAYESIAN ANALYSIS, 2013, 8 (03): : 623 - 645
  • [30] Bayesian Nonparametric Multiple Instance Regression
    Subramanian, Saravanan
    Rana, Santu
    Gupta, Sunil
    Sivakumar, P. Bagavathi
    Velayutham, C. Shunmuga
    Venkatesh, Svetha
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 3661 - 3666