Bayesian nonparametric multivariate ordinal regression

被引:12
作者
Bao, Junshu [1 ]
Hanson, Timothy E. [1 ]
机构
[1] Univ S Carolina, Dept Stat, Columbia, SC 29208 USA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2015年 / 43卷 / 03期
关键词
Finite mixture of probits; linear dependent Dirichlet process; multivariate linear model; DIRICHLET; MODELS; BIVARIATE;
D O I
10.1002/cjs.11253
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multivariate ordinal data are modelled as a finite stick-breaking mixture of multivariate probit models. Parametric multivariate probit models are first developed for ordinal data, then generalized to finite mixtures of multivariate probit models. Specific recommendations for prior settings are found to work well in simulations and data analyses. Interpretation of the model is carried out by examining aspects of the mixture components as well as through averaged effects focusing on the mean responses. A simulation verifies that the fitting technique works, and an analysis of alcohol drinking behaviour data illustrates the usefulness of the proposed model. (C) 2015 Statistical Society of Canada
引用
收藏
页码:337 / 357
页数:21
相关论文
共 55 条
  • [41] Nonparametric Bayesian modeling for multivariate ordinal data
    Kottas, A
    Müller, P
    Quintana, F
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (03) : 610 - 625
  • [42] Bayesian inference for multivariate ordinal data using parameter expansion
    Lawrence, Earl
    Bingham, Derek
    Liu, Chuanhai
    Nair, Vijayan N.
    [J]. TECHNOMETRICS, 2008, 50 (02) : 182 - 191
  • [43] MULTIVARIATE PROBIT ANALYSIS - A NEGLECTED PROCEDURE IN MEDICAL STATISTICS
    LESAFFRE, E
    MOLENBERGHS, G
    [J]. STATISTICS IN MEDICINE, 1991, 10 (09) : 1391 - 1403
  • [44] MCLACHLAN G, 2000, WILEY SER PROB STAT, P1, DOI 10.1002/0471721182
  • [45] McMillan G, 2005, J STAT SOFTW, V14
  • [46] McMillan G., 2005, J STUD ALCOHOL, V65, P643
  • [47] Geometric stick-breaking processes for continuous-time Bayesian nonparametric modeling
    Mena, Ramses H.
    Ruggiero, Matteo
    Walker, Stephen G.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (09) : 3217 - 3230
  • [48] Bayesian curve fitting using multivariate normal mixtures
    Muller, P
    Erkanli, A
    West, M
    [J]. BIOMETRIKA, 1996, 83 (01) : 67 - 79
  • [49] Bayesian multivariate logistic regression
    O'Brien, SM
    Dunson, DB
    [J]. BIOMETRICS, 2004, 60 (03) : 739 - 746
  • [50] SETHURAMAN J, 1994, STAT SINICA, V4, P639