Matrix product state approach to a frustrated spin chain with long-range interactions

被引:5
作者
Li, Zhi-Hua [1 ]
Wang, An-Min [1 ]
机构
[1] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 23期
基金
中国国家自然科学基金;
关键词
QUANTUM RENORMALIZATION-GROUPS; SYSTEMS; ENTROPY; ENTANGLEMENT; DIMERIZATION; AREA;
D O I
10.1103/PhysRevB.91.235110
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We make extensive simulations over a spin chain model that combines the frustrated J(1) - J(2) spin chain and the long-range nonfrustrated (-1)((r-1))r(-alpha) decay interactions through the variational matrix product state method for both finite and infinite lengths. We study both the ground-state entanglement and phase diagram. We find that it is most entangled in the rotation invariant long-range ordered antiferromagnetic phase, where the entanglement scales approximately logarithmically. We determine the development of the Majudar-Ghosh point to a disorder line from entanglement. And we approximately determine the transition from the dimerized and incommensurate phase of the J(1) - J(2) model to a decoupled phase by studying spin correlation and the dimerization order parameter. Some implications for entanglement in systems with long-range interactions are stated.
引用
收藏
页数:7
相关论文
共 38 条
[1]   CRITICAL-BEHAVIOR OF SPIN-S HEISENBERG ANTIFERROMAGNETIC CHAINS - ANALYTIC AND NUMERICAL RESULTS [J].
AFFLECK, I ;
GEPNER, D ;
SCHULZ, HJ ;
ZIMAN, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (05) :511-529
[2]   Valence-bond entanglement entropy of frustrated spin chains [J].
Alet, Fabien ;
McCulloch, Ian P. ;
Capponi, Sylvain ;
Mambrini, Matthieu .
PHYSICAL REVIEW B, 2010, 82 (09)
[3]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[4]   NUMERICAL AND APPROXIMATE ANALYTICAL RESULTS FOR THE FRUSTRATED SPIN-1/2 QUANTUM SPIN CHAIN [J].
BURSILL, R ;
GEHRING, GA ;
FARNELL, DJJ ;
PARKINSON, JB ;
XIANG, T ;
ZENG, C .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1995, 7 (45) :8605-8618
[5]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[6]   Topological estimator of block entanglement for heisenberg antiferromagnets [J].
Chhajlany, Ravindra W. ;
Tomczak, Piotr ;
Wojcik, Antoni .
PHYSICAL REVIEW LETTERS, 2007, 99 (16)
[7]   DENSITY-MATRIX RENORMALIZATION-GROUP STUDIES OF THE SPIN-1/2 HEISENBERG SYSTEMS WITH DIMERIZATION AND FRUSTRATION [J].
CHITRA, R ;
PATI, S ;
KRISHNAMURTHY, HR ;
SEN, D ;
RAMASESHA, S .
PHYSICAL REVIEW B, 1995, 52 (09) :6581-6587
[8]   Renormalization and tensor product states in spin chains and lattices [J].
Cirac, J. Ignacio ;
Verstraete, Frank .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (50)
[9]   Applying matrix product operators to model systems with long-range interactions [J].
Crosswhite, Gregory M. ;
Doherty, A. C. ;
Vidal, Guifre .
PHYSICAL REVIEW B, 2008, 78 (03)
[10]   Equivalence of the variational matrix product method and the density matrix renormalization group applied to spin chains [J].
Dukelsky, J ;
Martin-Delgado, MA ;
Nishino, T ;
Sierra, G .
EUROPHYSICS LETTERS, 1998, 43 (04) :457-462