Global existence of solutions for subcritical quasi-geostrophic equations

被引:7
作者
Ramzi, May [1 ]
Ezzeddine, Zahrouni [2 ]
机构
[1] Fac Sci Bizerte, Dept Math, Bizerte, Tunisia
[2] Fac Sci Monastir, Dept Math, Monastir, Tunisia
关键词
quasi-geostrophic equation; Besov spaces;
D O I
10.3934/cpaa.2008.7.1179
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the persistence of the regularity in the Besov norm spaces for the solutions of the subcritical Quasi-Geostrophic Equations with small size initial data in (B) over dot(infinity)(-(2 alpha-1),infinity).
引用
收藏
页码:1179 / 1191
页数:13
相关论文
共 31 条
[1]  
Bergh J., 1976, INTERPOLATION SPACES
[2]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[3]   REALIZATIONS OF HOMOGENEOUS BESOV-SPACES [J].
BOURDAUD, G .
ARKIV FOR MATEMATIK, 1988, 26 (01) :41-54
[4]  
CAFFARELLI L, 2006, DRIFT DIFFUSION EQUA
[5]  
Cannone M., 1995, ONDELETTES PARAPRODU
[6]   Global well-posedness in the super-critical dissipative quasi-geostrophic equations [J].
Chae, D ;
Lee, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 233 (02) :297-311
[7]  
Chemin J.-Y., 1996, PUBLICATION LAB ANAL
[8]   On the critical dissipative quasi-geostrophic equation [J].
Constantin, P ;
Cordoba, D ;
Wu, JH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 :97-107
[9]   Behavior of solutions of 2D quasi-geostrophic equations [J].
Constantin, P ;
Wu, JH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (05) :937-948
[10]  
CONSTANTIN P, 2007, HOLDER CONTINUITY SO